This module provides you with the mathematical underpinning for statistical methods in general and – in particular – for other OU statistics modules. You will gain a thorough grounding in mathematical statistics, together with generic skills. You will study distribution theory, leading on to the theory of statistical inference developed under both classical and Bayesian approaches. In the classical case, you will focus on maximum likelihood estimation. You'll also explore the development of these ideas in the context of linear modelling (regression and extensions). To study this module, you should have a sound knowledge of basic statistical ideas and competence in calculus, algebra and matrices, as provided by the appropriate OU level 1 and 2 study.
Course facts | |
---|---|
About this course: | |
Course code | M347 |
Credits | 30 |
OU Level | 3 |
SCQF level | 10 |
FHEQ level | 6 |
Course work includes: | |
4 Tutor-marked assignments (TMAs) | |
Examination | |
No residential school |
Other OU statistics modules focus on hands-on practical applications of statistical techniques and interpretation of data and statistical analyses. This module complements these modules by providing the mathematical theory underlying the methods and concepts, including a treatment of both classical and Bayesian statistics. A considerable amount of mathematics is sometimes required for this development.
This module is delivered online, with integrated use of exercises, animations, audio and video segments. You will also be provided with printed versions of the main units, extra exercises and a handbook.
The module is divided into four blocks of study.
Block 1: Review and distribution theory
The first block comprises a review unit and units introducing distribution theory. The review is mostly of fundamental statistical ideas of the type taught in Analysing data (M248), (see Entry requirements for details); there is also a speedy reminder of important relevant methods in mathematics, including calculus and matrices. Two units in this block introduce the theory of continuous distributions. You will learn, for example, how to evaluate moments of distributions and about other properties of some important univariate distributions. The mathematical structure of multivariate distributions will be explored, with some emphasis on the multivariate normal distribution.
Block 2: Classical inference
The second block is about the classical approach to statistical inference. You will learn how to use calculus to obtain maximum likelihood estimators of parameters. You will also learn about the properties of maximum likelihood estimation and of point estimation more generally. The mathematics underlying hypothesis tests and confidence intervals will be explored. There is also a unit on asymptotic (large sample) analysis, giving an insight into how statisticians study properties of statistical procedures by approximate methods.
Block 3: Bayesian statistics
In the third block you'll consider the Bayesian approach to statistical inference. The emphasis is first on so-called conjugate analysis which constitutes the type of Bayesian analysis most amenable to straightforward mathematical development. You'll consider prior to posterior analysis first, followed by Bayesian estimation based on decision theory. Markov chain Monte Carlo (MCMC) is a technique often used for tackling Bayesian problems which are not conjugate; you'll investigate the mathematical ideas leading to the basic methods of MCMC.
Block 4: Linear modelling
The fourth and final block gives some of the mathematical development underlying linear modelling. The material covers linear regression on a single explanatory variable; multiple linear regression where there is more than one explanatory variable; and generalised linear modelling for regression situations where the normal distribution is not a suitable model for variation in the response. Both classical and Bayesian approaches to the analysis of these models are considered.
You can find the full content list on the Open mathematics and statistics website.
Successful study of this module should enhance your skills in understanding some useful mathematical theory, interpreting mathematical results in a statistical context, constructing logical arguments, and finding solutions to problems.
This module will provide you with the theoretical underpinning of some important statistical methods, giving you an enhanced understanding of, and the ability to modify and develop, the statistical toolbox used by professional statisticians in practice.
There is no formal pre-requisite study, but you must have the required mathematical and statistical skills.
You can check you're ready for M347 and see the topics it covers here.
Talk to an advisor if you're not sure if you're ready.
You should aim to be confident and fluent with the concepts covered in the Are you ready? quiz here, and follow the advice in the quiz.
The key topics to revise include:
You'll also find it useful to be familiar with the following topics:
An OU level 2 module in mathematics is ideal preparation, and Analysing data (M248) is also useful.
You'll have access to a module website, which includes:
You'll be provided with printed books covering the content of the module, including explanations, examples and activities to aid your understanding of the concepts and associated skills and techniques. You'll also receive a printed module handbook.
You'll need broadband internet access and a desktop or laptop computer with an up-to-date version of Windows (10 or 11) or macOS Monterey or higher.
Any additional software will be provided or is generally freely available.
To join in spoken conversations in tutorials, we recommend a wired headset (headphones/earphones with a built-in microphone).
Our module websites comply with web standards, and any modern browser is suitable for most activities.
Our OU Study mobile app will operate on all current, supported versions of Android and iOS. It's not available on Kindle.
It's also possible to access some module materials on a mobile phone, tablet device or Chromebook. However, as you may be asked to install additional software or use certain applications, you'll also require a desktop or laptop, as described above.
Throughout your module studies, you'll get help and support from your assigned module tutor. They'll help you by:
Module tutors also run online tutorials throughout the module. Where possible, recordings of online tutorials will be made available to students. While these tutorials won't be compulsory for you to complete the module, you're strongly encouraged to take part.
The assessment details for this module can be found in the facts box.
Although your scores on the TMAs will not contribute directly to your final grade, you will need to complete at least four TMAs and score at least 30% on each of them.
The OU strives to make all aspects of study accessible to everyone. The Accessibility Statement below outlines what studying this module involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.
This module is delivered online but printed materials are provided for the core module text. Online-only materials include audio, video clips (with transcripts/subtitles), diagrams, interactive animations and self-assessed quizzes. Online materials also include links to external resources, online forums and online tutorial rooms.
This module has online tutorials. Although not compulsory, tutorials will help you consolidate your learning.
Mathematical and scientific symbols and expressions are used throughout the module and you will be required to use such notation within assessment.
The study materials contain a considerable number of diagrams and graphs, and some computer animations, screencasts and photographs. Reading and interpreting these is an important part of the study of this module. Figure descriptions are provided for most figures.
In this module you will be working with specialist reading material which includes mathematical notation. This is delivered online; units, extra exercises and a handbook are also delivered in printed form.
This module has Tutor-Marked Assignments (TMAs) which can be submitted on paper (by post) or online via the OU electronic TMA system, self-assessed practice quizzes completed online, and an exam that you will take remotely.
You will receive feedback from your tutor on your submitted Tutor-Marked Assignments (TMAs). This will help you to reflect on your TMA performance. You should refer to it to help you prepare for your next assignment. Solutions and some explanation will also be provided for the interactive practice quizzes.
All University modules are structured according to a set timetable and you will need time-management skills to keep your studies on track. You will be supported in developing these skills.
Mathematical statistics (M347) starts once a year – in October.
This page describes the module that will start in October 2024.
We expect it to start for the last time in October 2026.
This course is expected to start for the last time in October 2026.
This module may help you to gain membership of the Institute of Mathematics and its Applications (IMA). For further information, see the IMA website.
This module may also help you to apply for the professional award of Graduate Statistician conferred by The Royal Statistical Society (RSS).