
To accompany the BBC Make it Digital season



To accompany the BBC Make it Digital season

LEARNING WITH THE OPEN UNIVERSITY
The Open University (OU) has the UK’s largest academic 
community with over 200,000 students, and with around 
190 qualifications available in a range of fascinating and 
challenging subjects, you’re sure to be inspired. We call our 
flexible study method ‘Supported Open Learning’ – it’s different 
to other learning methods because it combines one-to-one 
support with flexibility, allowing you to fit study around your 
life. With us, you don’t have to put your life on hold to get the 
qualification you need. Around 70 per cent of our students fit 
study around their job and busy, changing lives.

Beginning to study
Our Access modules have been specially designed to help you 
find out what it’s like to study with the OU, get a taste for the 
subjects we offer, develop your study skills, build your 
confidence and prepare you for further study. You may even 
be able to study for free. To find out more visit 
www.openuniversity.co.uk/ug-access

Affordable education
Studying with the OU is more affordable than you might think. 
Depending on where you live we have a range of options to 
help make study more affordable. For example, if you have a 
household income (personal income if you live in Scotland) of 
less than £25,000 you may be eligible to study an Access 
module for free. For more information on this and all of the 
funding options available to you visit 
www.openuniversity.co.uk/affordable 

If you want to take your interest in 
mathematics and computing further you may 
be interested in the following qualifications:

BSc (Hons) Mathematics (Q31) 
Mathematics is indispensable to modern life. It enables us to 
predict the growth of markets, model airflow in a jet engine, 
calculate accurate drug doses and create 3D computer 
graphics. This degree will take your understanding of the 
concepts and theories of mathematics – and how they are 
applied in the real world – to an advanced level, and enhance 
your career prospects in a huge array of fields.

BSc (Hons) Computing and IT (Q63)
Computing and IT skills have become fundamental to the 
way we live, work, socialise and play. This degree course 
opens up the world of technology and an array of exciting 
career opportunities. It will help you to become a confident 
user and manager of information technologies, to administer 
and manage network or database systems, and to develop 
new software solutions to meet specific market or 
organisational needs.

For more information on these qualifications 
and the subjects you can study visit 
www.openuniversity.co.uk/courses

DIGITAL TECHNOLOGY PAST AND PRESENT
Digital technologies have changed the way we 
work, shop, socialise, and are entertained. 
Behind them lie clever algorithms – step by step 
procedures that detect where we are and 
suggest a route, predict the weather, recognise 
our fingerprint, and do many other things. 
Algorithms pre-date computers by over 2000 
years. For example, simple arithmetic 
procedures, like long division, are algorithms. 

In this pack you will see how computation 
changed over time, from early calculating devices 
to modern computers, who are some of the 
women and men behind major breakthroughs, 
what are the fundamental concepts and the 
limitations of algorithms. You will also see how to 
translate algorithms into code, so that computers 
can execute them much faster and more precisely 
than humans ever could.
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Supporting you all the way
Whether you’re at home, at work or on the 
move, your tutor, study advisers and other 
students are as close as you need them to 
be – online, on email, on the phone and 
face to face.
Whenever you log on, our forums are alive 
with people, and the opportunity to 
socialise doesn’t stop there. Our students 
regularly get together, either to attend a 
tutorial or as part of a local study group.

Find out more
To discover more about studying at 
The Open University:
• visit 

www.openuniversity.co.uk/courses
• request a prospectus at  

www.openuniversity.co.uk/prospectus
• call our Student Registration & Enquiry 

Service on 0300 303 5303
• email us from our website at  

www.openuniversity.co.uk/contact

For information about The Open 
University’s broadcasts and associated 
learning visit our website 
www.open.edu/openlearn/whats-on

The Open University has a wealth of 
free online information and resources 
about computing. To find out more visit 
www.open.edu/openlearn/makeitdigital
The Open University has a wide range 
of learning materials for sale, including 
self-study workbooks, DVDs, videos 
and software. For more information visit 
www.ouw.co.uk
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HISTORY OF  
COMPUTERS

Some key developments in the history of computers, from the 19th century to the present



BOOLEAN ALGEBRA  
1847 
In 1847 the British mathematician 
George Boole (1815–1864) published 
The Mathematical Analysis of Logic. 
In this he used algebraic symbols to 
represent factual statements. Through 
algebraic manipulation, useful 
simplifications of the statements could 
be made. His algebraic symbols could 
take the values 0 and 1, representing 
false and true. Boolean algebra is 
widely used in digital electronics.

COMPUTERS:
THE IDEA
The idea of a computer was around 
long before one was made. Why?
The essential ideas relating to computers 
had been grasped during the 19th century 
by Charles Babbage, Ada Lovelace and 
others. But the creation of practical devices 
depended on electronics that came over a 
century later. With ever more sophisticated 
electronics and communications technology 
came faster, smaller and more versatile 
computers. As computers became 
ubiquitous and cheap, ways of merging 
them with communications technology led 
to innovations that could not have been 
foreseen.

1837  1847  

LEARN MORE ABOUT coding and computers with 
The Open University. TU100 My digital life takes 
you on a journey from the origins of information 
technology through to the familiar computers of 
today, and on to tomorrow’s radical technologies.

BABBAGE’S 
ANALYTICAL ENGINE    
1837  
In 1837 the British mathematician 
Charles Babbage (1791–1871)  
outlined a design for a programmable, 
mechanical general-purpose computer 
called an Analytical Engine. Punched 
cards were to be used for programs 
and data. Apart from a small section,  
it was not constructed.
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COLOSSUS 
1943
Colossus, the first programmable 
electronic digital computer, began 
working in December 1943 at 
Bletchley Park as part of the UK’s 
wartime code-breaking operation.  
It was designed by the engineer 
Tommy Flowers, and partly funded 
by him as his superiors doubted its 
feasibility. Several were made, but 
they remained secret until the 1970s.

TRANSISTOR 
1947
In 1947, the first transistors were 
developed at Bell Laboratories 
in the USA. They were miniature, 
low-power solid-state electronics 
devices for amplification and for 
switching. Within a few years they 
superseded the power-hungry and 
unreliable valves used as switching 
elements in the first computers. 

1936 1945 1943 1947 

COMPUTABLE 
NUMBERS   
1936
In 1936 the mathematicians Alan 
Turing (pictured) and Alonzo Church 
separately showed that there could 
not be a rule-based method (or 
algorithm) for establishing whether 
certain types of mathematical 
problem are solvable. As part of his 
solution to this long-standing puzzle, 
Turing conceived of a hypothetical 
programmable computing machine.

VON NEUMANN  
MODEL  
1945
In 1945 the mathematician John  
von Neumann in the USA proposed 
a type of stored-program electronic 
computer in which program 
instructions were held in ‘live’ 
memory during operation, unlike 
earlier designs (such as Colossus) 
which were programmed by setting 
switches or configuring wired 
connections. 



MAGNETIC CORE 
MEMORY  
1951
Magnetic core memory, consisting of 
thousands of small rings of magnetic 
material, transformed the reliability 
of the random-access memory of 
computers, replacing temperamental 
technologies based on cathode-ray 
tubes or ultrasonic waves in mercury 
tubes. Magnetic core memory was 
dominant until the adoption of 
integrated-circuit memory in the 1960s.

INTEGRATED CIRCUIT 
1958 
An integrated circuit contains all 
the components of a transistorised 
electronic circuit on a single, tiny 
piece of silicon. Integrated circuits are 
mass produced and individually very 
cheap. Typically they contain billions 
of components, and are widely used 
in electronic devices of all kinds, 
especially computers.

1949 1951 1951 1958

FIRST WORKING 
COMPUTERS   
1949
The first stored-program digital 
electronic computers became 
operational in the period 1949–51 
in several locations, and sometimes 
initially as prototypes to test feasibility. 
Examples include the EDSAC in 
Cambridge, the ACE at London’s 
National Physical Laboratory, the 
Manchester University/Ferranti 
computers and the EDVAC in the USA.

LEO COMPUTER   
1951
The Lyons Electronic Office (LEO) 
was used for stock control and 
payroll in the Lyons chain of UK 
tea shops. It was the first computer 
used for a business application. 
LEO was based on Cambridge 
University’s EDSAC computer. 
Computers based on LEO were 
used until 1981.



RISC COMPUTING
1981
Reduced Instruction Set Computing 
(RISC) uses a small set of processor 
instructions and highly optimised 
processors. It can outperform the 
more usual Complex Instruction 
Set Computing (CISC) used in 
conventional computers despite its 
limitations. It is widely used in mobile 
phones and tablets because of its 
power efficiency.

WORLD WIDE WEB  
1989
In 1989 the British computer 
scientist Tim Berners-Lee, 
working at CERN, developed the 
World Wide Web. It facilitates the 
organisation, linking and display 
of information contained on 
dispersed computers joined by a 
local network or by the internet.

1975 1981 1981 1989

TCP/IP   
1975
Transmission Control Protocol 
and Internet Protocol (TCP/IP) 
was developed to enable data 
communication between technically 
incompatible networks. It was 
developed in connection with the 
ARPANET project in the USA, and 
in 1975 a successful two-network 
test transfer took place between 
Stanford in California and London. 
TCP/IP is the basis of the internet. 

PERSONAL 
COMPUTERS    
1981  
IBM model number 5150 was a 
desktop microcomputer that came  
to be known as a ‘personal computer’ 
(or PC). Its smallness and cheapness, 
and the existence of ‘IBM compatible’ 
accessories and software, led to 
its adoption in environments where 
computers had not been widely used. 
Apple computers soon followed.



CHARLES BABBAGE
26 DECEMBER 1791 – 18 OCTOBER 1871

Charles Babbage was a British mathematician, engineer 
and inventor. He is now mainly remembered for designing 

two computational machines based entirely on mechanical 
processes, although he was active in many non-computational 
projects.

Babbage’s first computational machine was the ‘difference 
engine’, conceived around 1822. It was a mechanised calculator 
rather than a computer, and was intended to help in the creation 
of mathematical tables such as logarithms. Such tables were 
normally compiled manually from human calculations and were 
notoriously inaccurate. Babbage’s difference engine was never 
completed in his lifetime, although a modern version based on 
his later designs was made by the Science Museum in London 
between 1989 and 1991, and found to work as intended.

Babbage’s second computational machine, the ‘analytical 
engine’, was described in 1837. It was closer to the modern 
idea of a computer than the difference engine was. ‘Programs’ 
were to be entered using punched cards of a kind already used 
in Jacquard looms in weaving. Babbage’s design enabled loops 
and conditional branching to be followed during execution of a 
program. These are features of modern computer programs. 

Funding problems and disagreements between Babbage and 
his engineer meant that only a small part of the analytical engine 
was made. Nevertheless, Babbage and Ada Lovelace described 
the programming of such a machine, which would have used a 
low-level language akin to a modern assembly language rather 
than a high-level language such as COBOL or Fortran.



ALAN TURING
23 JUNE 1912 – 7 JUNE 1954

The British mathematician and cryptographer Alan Turing 
envisaged a programmable computer during the 1930s 

as part of his solution to a problem posed by an earlier 
mathematician, David Hilbert, concerning the solvability of 
unsolved mathematical problems. 

Hilbert had wondered whether a rule-based procedure (more 
precisely, an algorithmic procedure) could exist for determining 
whether mathematical problems were solvable. Turing, as part 
of his proof that no such procedure could exist, imagined a 
programmable general purpose ‘computer’ (not a term he used). 
The machine he envisaged was impractical, but this did not matter 
as his proof did not require that such a machine be built. However, 
he soon became interested in the practical realisation of his idea. 

As a code-breaker at Bletchley Park during the Second World 
War, Turing was not directly involved with the Colossus computer 
designed and constructed by Tommy Flowers although Turing 
knew and admired Flowers’s work. However, shortly after the 
war Turing designed the ACE computer for the National Physical 
Laboratory in London. Delays in the project led to his resignation 
from it, and his transfer to Manchester University, where he used 
the recently completed ACE computer until his early death in 1954.

Turing’s contribution to computing was mostly theoretical. He also 
recognised the philosophical and ethical problems computers 
raised. Unlike many of his colleagues, he saw no reason in principle 
to distinguish between human intelligence and machine intelligence, 
although he did not pretend that the computer programs of his own 
time produced convincingly intelligent behaviour.



TIM BERNERS-LEE  
8 JUNE 1955 – PRESENT DAY

The British computer scientist Tim Berners-Lee developed
the World Wide Web. He developed his idea during his 

two periods of work at CERN, the European Organization for 
Nuclear Research in Geneva, Switzerland. 

In his first period at CERN, in 1980, Berners-Lee sought to 
improve the organisation of information in an institution where 
staff turnover was high, where many projects were being pursued 
and updated simultaneously, and where computer use was 
centralised but open to multiple users. He developed a form of 
hypertext (which already existed) so that parts of documents 
on the system could link to parts of other documents on the 
same system. He considered this direct linking a better form of 
organisation than using hierarchies, trees or keywords.

During his second period at CERN from 1984, Berners-Lee 
developed his hypertext system to work between networked 
computers on different, and possibly widely separated networks. 
For this he married his hypertext system with internet protocol, 
so that addresses of remote computers could be embedded in 
hypertext links. Users could then move seamlessly between links 
in documents held on different networks in different locations. 
Berners-Lee also created the first internet browser. 

A measure of Berners-Lee’s success is that many users 
mistakenly think the World Wide Web is the same as the internet. 
He declined to patent his invention or to require royalties, 
believing the World Wide Web should be freely available.



WOMEN IN  
MATHEMATICS  
AND COMPUTING

Women who dared to go against the flow, and their achievements in mathematics



ÉMILIE DU CHÂTELET  
1706 – 1749
The intellectual and scientist Gabrielle 
Émilie Le Tonnelier de Breteuil, 
marquise du Châtelet, knew and was 
respected by many of the leading 
French mathematicians of the day. She 
collaborated scientifically with Voltaire, 
who was one of her lovers and her 
long-time companion, and her masterful 
translation into French of Newton’s 
fiercely difficult Principia Mathematica, 
which included a detailed commentary 
of her own, remains unsurpassed.  

THE STORY 
SO FAR
Ever wondered why stories about 
mathematicians always seem to 
be about men? Is it because men 
are better at mathematics than 
women? Absolutely not.
It’s because until very recently society 
dictated that it wasn’t very respectable for 
women to be mathematicians. Unfair as 
it was, it was very difficult for a woman to 
make herself heard and to be accepted by 
other mathematicians. It just wasn’t the done 
thing in polite society. But there were a few 
women who dared to go against the flow.

c.300 1706 

LEARN MORE ABOUT mathematics with 
The Open University. MU123 Discovering 
mathematics provides a gentle start to the 
study of mathematics. It will help you to integrate 
mathematical ideas into your everyday thinking.

HYPATIA
c.300 – 415 
Hypatia is the only woman 
mathematician of significance whose 
name has come down to us from 
Antiquity. Although none of her work 
survives, she is reported to have written 
commentaries on Apollonius’s Conics, 
Ptolemy’s Almagest, Diophantus’s 
Arithmetic and Archimedes’ Measurement 
of the Circle. For her prominent 
identification with learning, she was 
hacked to death by a Christian mob.
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SOPHIE GERMAIN   
1776 – 1831
As a woman Sophie Germain was 
barred from studying at the École 
Polytechnique so she adopted a male 
pseudonym and corresponded with 
the lecturers. In 1816 she became the 
first woman to win a Paris Academy 
Prize with her work on elasticity. 
Her best work was in number 
theory where she made important 
contributions to the proof of Fermat’s 
Last Theorem. 

ADA LOVELACE   
1815 – 1852
Ada Lovelace was the daughter of the 
famous poet Lord Byron, though she 
never met her father. She was taught 
mathematics by Mary Somerville and 
by Augustus De Morgan. Through her 
family and friends she met several 
influential mathematicians and 
scientists, one of whom was Charles 
Babbage.

1718 17801776 1815

MARIA AGNESI 
1718 – 1799
Maria Gaetana Agnesi was the 
first woman mathematician of 
the modern period. By the age of 
eleven she had mastered several 
languages, including French, Latin, 
Greek, German, Spanish and 
Hebrew. Her mathematical fame 
rests on her two-volume Instituzione 
Analitiche ad Uso della Gioventù 
Italiana (1748–9), one of the earliest 
treatments of the calculus.

MARY SOMERVILLE 
1780 – 1872 
Mary Somerville was a Scottish 
science writer whose Mechanism of the 
Heavens (1831), a popularisation and 
translation of Laplace’s celebrated but 
somewhat impenetrable Mécanique 
Céleste, made her famous. Laplace, 
who praised her interpretation, claimed 
she was one of the few people who 
understood his work. She was the first 
woman to have experimental results 
published by the Royal Society.      



SOFIA 
KOVALEVSKAYA   
1850 – 1891
In 1868 Sofia Kovalevskaya engaged 
in a ‘fictitious’ marriage so she could 
leave Russia to study mathematics 
in Germany. With her appointment at 
the University of Stockholm in 1883, 
she became the first professional 
female mathematician. In 1888 her 
work on the mathematics of a rotating 
body won the Prix Bordin of the Paris 
Academy.  

MARY CARTWRIGHT   
1900 – 1998
A student of GH Hardy, Mary 
Cartwright made important 
contributions to the mathematics 
of chaos in collaboration with JE 
Littlewood. In 1947 she was the 
first woman mathematician to be 
elected Fellow of the Royal Society, 
and in 1961–2 she was the first 
woman president of the London 
Mathematical Society.
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FLORENCE 
NIGHTINGALE 
1820 – 1910
The founder of modern nursing, 
Florence Nightingale, was a pioneer 
of applied statistics. Her studies of 
the 1850s on mortality statistics, 
arising from her experience in 
the Crimean War, including her 
introduction of the polar-area 
diagram, led eventually to reforms  
in ward hygiene and hospital design.  

EMMY NOETHER 
1882 – 1935 
Emmy Noether was one of the 
most talented and creative women 
mathematicians of the 20th century 
and maybe of all time. One of 
the founders of modern abstract 
algebra, she was dismissed from the 
University of Göttingen by the Nazis 
in 1933, and died following surgery in 
the USA at the height of her creative 
powers.    



OLGA TAUSSKY-TODD   
1906 – 1995
In 1937 the Austrian mathematician 
Olga Taussky arrived in London, 
having left Göttingen due to political 
unrest. There she met and married the 
mathematician Jack Todd. During the 
war she worked on problems arising in 
flutter analysis of supersonic aircraft. 
Her most influential work was in matrix 
theory but she also made important 
contributions to number theory. 

MARYAM 
MIRZAKHANI 
1977 – Present day
Maryam Mirzakhani is an Iranian 
mathematician working at Stanford 
University. While at school, she won 
a gold medal in the Mathematical 
Olympiad. In 2014 she became the 
first woman to win a Fields Medal, the 
highest honour a mathematician can 
achieve, for her ‘striking and highly 
original contributions to geometry and 
dynamical systems’.
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GRACE HOPPER 
1906 – 1992 
Grace Murray Hopper was an 
American computer scientist and 
a United States Navy rear admiral.  
During 1951–2, she led the team  
that constructed the first compiler for 
a computing programming language.  
This compiler was a precursor to 
COBOL (Common Business-Oriented 
Language) which was designed in 
1959 and became widely adopted  
due to Hopper’s influence.     

JULIA ROBINSON 
1919 – 1985
Julia Robinson made a remarkable 
contribution to the solution of 
Hilbert’s 10th Problem, a problem 
concerning the existence of solutions 
of a certain type of equation. In 
1975 she became the first woman 
to be elected to the United States 
National Academy of Sciences, 
and in 1983 she became the first 
woman president of the American 
Mathematical Society.



ADA LOVELACE
10 DECEMBER 1815 – 27 NOVEMBER 1852

Augusta Ada King, Countess of Lovelace, was born
Augusta Ada Byron and is now commonly known as 

Ada Lovelace. She was an English mathematician and 
writer chiefly known for her work on Charles Babbage’s 
early mechanical general-purpose computer, the Analytical 
Engine. Her notes on the engine include what is recognised 
as the first algorithm intended to be carried out by a 
machine. Because of this, she is regarded as the first 
computer programmer.

Ada was born 10 December 1815 as the only child of the poet 
Lord Byron and his wife Anne Isabella Byron. All Byron’s other 
children were born out of wedlock to other women. Byron 
separated from his wife a month after Ada was born and left 
England forever four months later, eventually dying of disease 
in the Greek War of Independence when Ada was eight years 
old. Ada’s mother remained bitter towards Lord Byron and 
promoted Ada’s interest in mathematics and logic in an effort 
to prevent her from developing what she saw as the insanity 
seen in her father, but Ada remained interested in him despite 
this (and was, upon her eventual death, buried next to him at 
her request).

Ada described her approach as ‘poetical science’ and 
herself as an ‘Analyst (& Metaphysician)’. As a young adult, 
her mathematical talents led her to an ongoing working 
relationship and friendship with fellow British mathematician 
Charles Babbage, and in particular Babbage’s work on the 
Analytical Engine. Between 1842 and 1843, she translated an 
article by an Italian military engineer.



WOMEN IN WW1
28 JULY 1914 – 11 NOVEMBER 1918

On 9 September 1915, Adelaide Davin, a computer operator 
in Karl Pearson’s statistical laboratory at University 

College London, wrote to Pearson: 

“I was coming home in a tram just before 11 o’clock when  
the driver called out that there had been a Zep, and that it 
had been fired at twice – then the tram stopped, and the 
lights went out, whereupon several women began to shriek. 
I got out walked home to find all the neighbours in the street 
gazing heavenwards. Nobody obeyed the instructions to seek 
shelter.  We could see the flashes of the anti-aircraft guns, but 
they all went very wide of the mark.”

In WW1 combat in the air was a new phenomenon and 
the theory and practice of anti-aircraft gunnery was in its 
infancy. Clearly improvement in anti-aircraft systems was a 
matter of urgency. However, the creation of the necessary 
high-angled range tables was no trivial task and involved 
complicated mathematics, extensive computations and good 
draughtsmanship. The mathematical theory and data collection 
were done by mathematicians based on board HMS Excellent 
at Portsmouth and at Woolwich, while the computations and 
production of the tables were done, much of it by women, in 
Pearson’s laboratory. Women were employed as computers 
elsewhere as part of the war effort, but Pearson’s aim “to 
maintain a body of trained computers together who would have 
the force of character and knowledge to meet new problems” 
provided those in his laboratory with a unique opportunity.



SOFIA KOVALEVSKAYA 
15 JANUARY 1850 – 10 FEBRUARY 1891

The Russian mathematician Sofia Vasilyevna Kovalevskaya 
made important contributions to the theory of differential 

equations, mathematical analysis and mechanics. She 
was the first woman in modern Europe to hold a PhD in 
mathematics, to hold a professorship in mathematics and  
to be an editor of a scientific journal. She was also a 
supporter of women’s rights, a champion of radical causes, 
and an accomplished writer.  

Sofia was able to study mathematics as a child but in 1868, as 
Russian universities were closed to women, she engaged in a 
‘fictitious’ marriage with Vladimir Kovalevskij, a paleontology 
student, so she could emigrate. She first studied in Heidelberg 
before, in 1871, moving to Berlin to study with the great Karl 
Weierstrass, although she was not allowed to attend lectures 
at the university. In 1874 she submitted three papers to the 
University of Göttingen, including one on the rings of Saturn, 
and was awarded her PhD summa cum laude. Meanwhile she 
had visited London and attended George Eliot’s salon.

Sofia returned to Russia with Vladimir in 1874 and in 1878 their 
daughter was born. In 1881 she left Vladimir and went to Paris 
to continue with her mathematics. Vladimir committed suicide in 
1883, and in the same year Sofia was appointed to a temporary 
position at the University of Stockholm. In 1888 she won the 
prestigious Prix Bordin of the Paris Academy for her work on 
the mathematics of a rotating body. In 1889 she was appointed 
to a permanent professorship in Stockholm. Two years later she 
died unexpectedly of pneumonia.      



BASICS OF
ALGORITHMS 

How algorithms work: step by step recipes for everyday life



ALGORITHMS MAKE THE 
WORLD GO AROUND

An algorithm is a precisely defined step by 
step procedure that, given some input, 

will produce the desired output. Whenever 
you give directions to someone, you are 
constructing an algorithm with the start 
location as input and the destination as 
output. It’s a very restricted algorithm: it  
works only for those start and end points. 

A sat nav device has a general algorithm that 
given any origin and destination (the input) will 
find the route (the output) from one to the other, 
according to the map it has. The route is itself an 
algorithm (‘turn left in 200m’, etc.) for the driver  
to execute.

The modern world cannot function without 
algorithms. Shopping, entertainment, scientific 
discovery, transportation, and many other things 
all rely on sophisticated algorithms to process 
payments, buy stock, analyse DNA, stream video, 
recognise licence plates, and so on.



 

THE BASIC INGREDIENTS 

Let M and N be two positive integer numbers
while M and N are different:
   if M > N then:
      let M be M - N
   otherwise:
      let N be N - M
the GCD is N (or M because they’re the same)

An algorithm is a combination of sequences of steps (one after the other), repetition of steps, and 
choices between steps, depending on some conditions. 

The algorithm is a sequence of three steps: 
1. Get the input 
2. Compute the GCD 
3. Show it
The computation is a repetition of a two-way choice, each 
one being a single step that makes the larger number 
smaller.

Example of Euclid’s algorithm

M N STEPS

21 49 M (21) is not more than N (49) so  
N changes to N - M = 49 - 21 = 28

21 28 M (21) is not more than N (28) so  
N changes to N - M = 28 - 21 = 7

21 7 M (21) is more than N (7) so M changes  
to M - N = 21 - 7 = 14

14 7 M (14) is more than N (7) so M changes  
to M - N = 14 - 7 = 7

7 7 M and N are the same so GCD equals 7

All algorithms impose conditions on what input is 
acceptable to them. In this case both numbers must  
be positive integers, to guarantee that the repetition  
will stop.

Euclid’s algorithm 
One of the oldest algorithms known was described by 
Greek mathematician Euclid in c. 300BC. It takes two 
positive integers (like 1, 2, 3, etc.) and produces  their 
greatest common divisor (GCD), the largest number that 
divides both without a remainder.



SEARCHING: TWO RECIPES 

Linear search 
This simplest algorithm goes through each word in the text 
and compares it to the search word. If they’re the same, the 
search stops and it reports success (the word has occurred 
in the text). If it gets to the end of the text without finding 
the same word, it reports failure.

Search word - “the”. 

Text - “to be or not to be in this text that is the question” 

Binary search
A faster algorithm, that does fewer comparisons to report 
success or failure, is binary search. The input must be 
ordered: in this case the text’s words appear in dictionary 
order. 

The search word is compared to the word in the middle of 
the document. If they’re the same, the search stops. If the 
search word comes alphabetically before the middle word, 
then the binary search continues on the left half of the 
document, otherwise on the right half. This is repeated until 
the word is found (success) or the part of the document to 
be searched is empty (failure). 

The search word is the 12th word of the text, so linear 
search makes 12 comparisons before reporting success.

The worst case for a linear search is when the searched 
word occurs at the end of the text or not at all, because 
all the words the document will be compared before 
reporting success or failure. Even removing duplicate words 
beforehand from the text doesn’t improve things much  
(10 instead of 12 comparisons).

Binary search required only 2 comparisons to find the word. 
After each comparison the search space (the list of words) is 
halved, making the algorithm much faster. It is an example of 
a recursive algorithm, which is applied in the same form to 
ever smaller inputs.

Some algorithms solve very specific problems, others are general and are used in a variety of 
contexts – for instance search algorithms where we want to know if a word occurs in a text.

to be or not to be in this text that is the question

1. 
No

2. 
No

3. 
No

4. 
No

5. 
No

6. 
No

7. 
No

8. 
No

9. 
No

10. 
No

11. 
No

12.  
Yes

Success
be in is not or question text that the this to

1. No 2. Yes

Success



AN ALGORITHM’S BEST FRIEND 

Hash table
A hash table, a widely used data structure, is a table of key 
and bucket pairs. Each bucket contains all the data with 
that key. The key could be the length of a word, and thus 
each bucket only contains words of the same length. 

Given a search word, the algorithm computes its length and 
then searches only the corresponding bucket.

The search for “the” still requires two comparisons, 
but other searches become faster. Looking for “today” 
reports failure after zero comparisons with hash search 
because there is no 5-letter word bucket. It would take 11 
comparisons with linear search and 4 with binary search.

Hashing is an example of a divide-and-conquer strategy. 
In this case the text’s words are divided into buckets so that 
each search is performed on a single bucket.

How the data are structured goes hand in hand with how the algorithm works. Often the key to an 
efficient algorithm is an efficient data structure.

Key  
(number of letters 
in the word)

Bucket
(words of the same length)

2-letter words be in is or to

3-letter words not the

1. No 2. Yes

Success   

4-letter words text that this

8-letter words question

The postcode is an example of a hash key, the bucket 
being all addresses with the same postcode, thus 
helping to sort and deliver post more quickly.

Search Comparisons Result

Linear Binary Hash

the 12 2 2 Success

not 4 3 1 Success

today 11 4 0 Failure



 

BRUTE FORCE: THE SURE BUT SLOW WAY 

t h a t i s t h e q u e s t i o n

1 q u e s t Failure

2 q u e s t Failure

3 q u e s t Failure

…

12 q u e s t Failure

13 q u e s t Match

14 q u e s t Match

15 q u e s t Match

16 q u e s t Match

17 q u e s t Success

Brute force approach
This approach tries all possible matches systematically, like the linear search.  
To search for the string ‘quest’ the 1st character of the string is compared to 
the 1st character of the text. If they are the same, the 2nd string character is 
compared to the 2nd of the text, and so on, until the whole string matches 
or one comparison fails. Following a failure the string is shifted right by one 
character and the comparisons re-start.

A word processor can quickly search for any sequence of characters (a string). It is impractical for a 
word processor to construct a hash table of all strings occurring in the document, memorising each 
string’s position in the text, and to change the information constantly as the document is edited.  
A different algorithm is needed.

17 comparisons are made:  
12 mismatches of ‘q’ (first letter of 
string) followed by matching the 
5-letter string.



 

t h a t i s t h e q u e s t i o n

1 q u e s t Failure (no space 
in word)

2 q u e s t Failure (no ‘h’ in 
word)

3 q u e s t Failure (e in word 
so move to e)

4 q u e s t Match

5 q u e s t Match

6 q u e s t Match

7 q u e s t Match

8 q u e s t Success

The Boyer–Moore algorithm
In 1977, computer scientists Boyer and Moore had three key 
insights into the problem. 
1. If the whole string matches, so must the last character. 

Hence we can do comparisons in backwards order. 
2. If the match fails because the character in the text does not 

occur in the string, we can shift the string by its whole length.
3. If the match fails but the text character occurs in the 

string, the string is moved enough positions so that the 
text character matches the corresponding string character.

‘t’ (the last letter of the string) is compared against a space, 
which doesn’t occur in the string and the whole string shifts to 
the right. 
‘t’ is compared with ‘h’, which also doesn’t occur in the string. 
‘t’ is compared with ‘e’, which is the 3rd letter of the string 
and we therefore shift the string to align the ‘e’s. 
‘t’ is compared, which matches, and then in turn each letter is 
matched backwards until all match. 
8 comparisons are made, less than half used by brute force.

THINKING OUTSIDE THE BOX
A different perspective can sometimes lead to a more efficient algorithm.



SUMMING UP
Great algorithms are worth millions to companies. Google 
became leader of search engines, attracting millions in adverts, 
due to its ranking algorithm, while Amazon, Netflix and others 
use recommendation algorithms to attract further business. 
Creating good algorithms requires both creativity and technical 
expertise, but we all occasionally think algorithmically, e.g. 
when planning how best to organise a trip.

We have looked at some key algorithmic concepts and 
strategies that you can apply in everyday problem solving.  
All algorithms use sequence, repetition and choice of steps. 
Brute force explores all potential solutions until finding one. 
Divide-and-conquer partitions the solution space to work 
on smaller sub-problems. Divide-and-conquer algorithms are 
often recursive, i.e. they repeat themselves. Algorithms work 
only for the input they expect (e.g. two positive integers). Good 
algorithms use to their advantage what is known about the 
input (e.g. that the input is ordered). Algorithms depend heavily 
on how data are organised. Finding the appropriate data 
structure often helps find an efficient algorithm.

LEARN MORE ABOUT algorithms and data structures with 
The Open University. M269 Algorithms, data structures and 
computability will help you become a computational thinker, 
exploring a range of computing concepts and applying these to a 
variety of problems.



What are the limitations of algorithms and the challenges of writing them?

THE LIMITS OF
ALGORITHMS 



ALGORITHMS EVERYWHERE 

W   hether we are aware of it or not, 
algorithms dominate our lives today. 

From online retailing to share trading, from 
drug design to driverless cars, from online 
dating to taxi services, from setting insurance 
premiums to surveillance – algorithms have 
exploded into every corner of modern life.

All this raises a serious question: it seems 
that algorithms can do everything, but are 
there things that they can’t do? What are their 
limitations, if any? 

One way to think about this is to consider the 
efficiency of an algorithm. There is nothing 
mysterious about the concept itself: it is simply 
a recipe – a set of steps which, if followed, solve 
a problem. So it is usually easy enough to write 
an algorithm. What is much harder is to write an 
efficient algorithm.



 

WHAT ALGORITHMS CAN’T DO – UNCOMPUTABILITY
Some problems can take far too long to solve. But are there problems that can’t be solved 
at all by an algorithm? 

The Turing machine 
In 1936, the great mathematician Alan Turing succeeded 
in proving an abstract mathematical problem known, 
dauntingly, as the Entscheidungsproblem. His proof was 
based on the idea of a hypothetical machine, now known 
as the Turing machine, which can simulate any algorithm, 
regardless of its complexity. 

The machine has a register that indicates what state it is 
currently in, and an infinitely long tape divided into cells, 
each cell containing a symbol, 1, 0 or blank.

The Turing machine’s head (shown in grey) is able to read the 
symbol in the cell under it, write a symbol to that cell, and 
shift the tape one cell to the left or right. 

The machine carries out the following steps:
1. Read the symbol under the head.
2. Get the current state from the register.
3. Consult a table of instructions to decide what to do next.
4. Execute those instructions and move to a new state.

For the following (partial) example of a table

State Head 
reads

Head 
writes

Tape shift Move to 
State 

1 Blank None Left 2

1 0 Write 1 Right 2

1 1 Write 0 Right 3

2 Blank Write 0 Right 1

0 1 0 1 If the machine is in State 1, and 0 is under the head, then 
it writes 1 to the tape, shifts the tape right one space, and 
moves to State 2. It goes on repeating Steps 1–4 until it 
stops.

Turing used the Turing machine to prove that certain 
problems were undecidable and could never be solved by 
any algorithm.



MEASURING ALGORITHMS 

Big-O analysis
It is futile to try to compare algorithms directly 
by timing the actual speeds at which they run. 
Different computers will yield different timings on 
exactly the same algorithms. However, computer 
scientists have developed a way of estimating 
and comparing the efficiency of algorithms. It is 
known as complexity analysis or Big-O. 

Big-O analysis compares the efficiency of 
algorithms in terms of how the number of 
operations they have to do (and thus how long 
they will take to finish) increases as the size of 
their input grows.

We can use Big-O analyses to compare the 
efficiency of algorithms. This is illustrated 
graphically by plotting the number of operations 
against input size N. The figure shows plots of 
algorithms of various complexity. This shows the O(N) algorithms’ workload increases steadily, while 

O(log N) algorithms grow much more slowly. Algorithms’ workload 
in the important class O(Nm) (e.g. O(N2) – known as polynomial 
algorithms) increases very rapidly, whereas that for O(N!) skyrockets.

Algorithms can be measured by 
how many operations they perform 
and how long it takes to do those 
operations.

O



TRAVELLING SALESPERSON 
PROBLEM
A salesperson has to visit a number (N) of cities, each a certain 
distance from the others. The problem is to find a route that, 
from a given start point, visits all cities once only, and is the 
shortest round trip. 

One obvious algorithm would be to generate every possible 
route and pick the shortest. In the 5 city problem, there are 
24 possible routes. Any modern computer could find the 
shortest route in microseconds. However, the problem is that 
our algorithm increases very rapidly (like O(N!) ). If there are 
10 cities, there are 362,880 possible routes; 25 cities gives 
roughly 1.22 ×1017; and for 75 cities, an unimaginably huge 
3.31×10107 routes. (The number of atoms in the observable 
universe is somewhere between 4×1079 and 4×1081.) Therefore 
no conceivable computer could examine this number of routes 
in the lifetime of the universe.

The problem  
for 5 cities



 

POLYNOMIAL ALGORITHMS
Realistically, only polynomial algorithms (the 
blue line in the graph overleaf ), or better, are 
fast enough solving real-world problems.

Computer scientists refer to problems that can be 
solved by algorithms running in polynomial time (the 
time required to solve the problem) as belonging to  
class P. Another class of problem – called NP – 
comprises those in which an answer can be verified 
in polynomial time. For instance, it is very easy 
to verify whether a list of numbers is sorted, so 
sorting is an NP problem; and there are numerous 
polynomial algorithms for sorting that list, so the 
problem is P also. 

Many problems are known to be able to be verified 
(NP), but with no known polynomial algorithm to 
solve them.

A major unsolved problem in computing and 
mathematics is whether P = NP. In other words, for 
every NP problem, is there a polynomial algorithm 
that can solve it? This is one of seven Millennium 
Prize Problems. Solve it and you will  
win US$1,000,000!



UNCONVENTIONAL ALGORITHMS
Unconventional algorithms, from the natural world, are often used to find a good answer.

The travelling salesperson problem may seem unrealistic, 
but it is representative of a huge class of important problems 
called optimisation problems. Computer scientists have 
devised a number of algorithms (heuristic algorithms) to 
tackle such problems. None of these can be certain to find 
the best possible answer, only good answers.

A number of unconventional algorithms have also been 
developed, many of them based on the way in which problems 
are solved in the natural world. For example, it is known that 
swarms of ants are able to find the shortest distance between 
points. A similar principle can be applied to the travelling 
salesperson problem. A swarm of virtual ‘ants’ is distributed 
across a graph representing the cities. By applying simple 
rules, the swarm eventually congregates on the shortest path.Travelling ants



SUMMING UP
Despite some restrictions, there are still countless problems 
that can be solved algorithmically, and algorithms are 
creeping inexorably into daily life. But does this matter? Won’t 
algorithms just make our lives easier and better?

We are quite accustomed to the idea that algorithms can 
deal with all the boring, repetitive jobs that humans generally 
don’t like doing, supposedly liberating us for more creative 
and enriching work. But the evidence is now starting to 
accumulate that algorithms can also replace humans working 
in fields where we would consider that human intelligence, 
knowledge and skill are required – medicine, the law, planning, 
and so on. 

A study conducted at the Martin School in Oxford examined 
702 of such types of job, and concluded that 47% of current 
employment was at risk of replacement by technologies that 
are already operational, or are being tested in laboratories.

The future of work, and of society as we know it, may be 
threatened by algorithms …

 

LEARN MORE ABOUT algorithms and data structures with 
The Open University. M269 Algorithms, data structures and 
computability will help you become a computational thinker, 
exploring a range of computing concepts and applying these to a 
variety of problems.



CALCULATING  
DEVICES

Innovations through history that have helped us to count



SALAMIS TABLET   
c.300BC 
The Salamis tablet, which is the 
earliest known surviving example of 
a counting board, was found on the 
Greek island of Salamis in 1846. It is 
made of white marble, has three sets 
of Greek numbers arranged around its 
edges, and measures approximately 
150cm x 75cm x 4.5cm.  

HELPING 
US COUNT
You may be surprised to know that 
the calculator you have in your 
pocket or on your smart phone 
has a rich history which stretches 
back over several millennia.  
From clay tablets to marble counting boards, 
from abacuses to logarithm tables, from 
slide rules to calculating machines, the types 
of device have been many and varied. Each 
device has been an innovation of its day,  
yet all build on the same basic principle of 
mathematics.

c.2600BC  c.300BC  

LEARN MORE ABOUT mathematical concepts 
and techniques with The Open University. 
MST124 Essential mathematics 1 provides a 
broad and enjoyable foundation for mathematics. 
It teaches you the essential ideas and techniques 
that underpin mathematical subjects.

SUMERIAN CLAY 
TABLET   
c.2600BC  
The world’s oldest datable 
mathematical table comes from the 
Sumerian city of Shuruppag to the 
north of Uruk. It is ruled into three 
columns on each side: the first 
two columns list length measures 
followed by the Sumerian word for 
‘equal’, and the final column gives 
the products of these lengths in area 
measure.  
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NAPIER’S 
LOGARITHMS  
1614
The Scottish laird John Napier (1550–
1617), in an effort to aid astronomers, 
spent twenty years developing his 
tables of logarithms, computing almost 
10 million entries. His initial formulation 
was rather awkward but thanks to the 
mathematician Henry Briggs (1561–
1630), who visited Napier in 1615, the 
logarithms were reformulated into the 
more practical form we know today.   

WILLIAM OUGHTRED  
SLIDE RULE 
1620
In 1620 Edmund Gunter (1581–1626) 
made a straight logarithmic scale (or 
rule) on which calculations could be 
performed using a set of dividers.  
William Oughtred (1574–1660) 
capitalised on this idea and used two 
such scales sliding by one another 
to perform direct multiplication and 
division, thus inventing the slide rule. 
He also developed a circular slide rule.    
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OPUS PALATINUM 
DE TRIANGULIS   
1596
Georg Joachim de Porris, also known 
as Rheticus (1514–1574), is famous 
for facilitating the publication of 
Copernicus’s On the Revolutions of 
the Heavenly Spheres. Rheticus’s 
own masterwork, the 1500 page 
Palatine Work on Triangles, published 
posthumously, provides tables for all  
six trigonometric functions that were 
still being used in the 20th century.  

NAPIER’S RODS 
1617
Napier’s Rods – often known as 
Napier’s Bones, supposedly because 
the more expensive sets were made 
of bone or ivory – were created by 
John Napier to aid multiplication 
(only addition is needed to do the 
calculation). They consist of 10 
rectangular blocks, and Napier 
explained how to use them in his  
book Rabdologia.  



STEPPED  
RECKONER  
1671 – 1673
Gottfried Wilhelm Leibniz’s calculator 
was inspired by Pascal’s but had 
for its operating mechanism a new 
mechanical feature, a stepped drum. 
Although it was the first machine to 
perform all four arithmetic operations, 
its intricate precision gear-work, 
which was rather beyond the 
construction methods of the time, 
meant it rarely worked reliably.      

CHARLES BABBAGE’S 
DIFFERENCE ENGINE 
1822 
In 1822 Charles Babbage proposed a 
mechanical calculator for computing 
tables of various mathematical 
functions using the method of divided 
differences. Between 1823 and 1842 
the British government gave him 
£17,000 to build it but he did not 
succeed in constructing a working 
engine.
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BLAISE PASCAL’S 
CALCULATOR    
1648
Pascal appears to have been 
stimulated to develop his calculator 
while helping his father, a supervisor 
of taxes. It was a machine for 
addition and subtraction, and it went 
through 50 prototypes before Pascal 
presented it to the public in 1648. It 
is one of the world’s first mechanical 
calculators.   

JACQUARD’S LOOM   
1801
The Jacquard loom was a 
mechanical loom invented by the 
Frenchman Joseph Marie Jacquard. 
The loom was controlled by a chain 
of punched cards laced together 
in a continuous sequence. One 
card corresponded to one row of 
the design. Jacquard’s punch-card 
system was later adapted by Charles 
Babbage.    



MILLIONAIRE 
CALCULATOR 
1893
The ‘Millionaire’ mechanical 
calculator was designed by Otto 
Steiger, a Swiss engineer, and was in 
production until 1935. It was the first 
commercially successful calculator 
that could perform multiplication 
directly, and it was very fast for its 
day. The standard model weighed 
72lb and some models could weigh 
up to 120lb!  

POCKET CALCULATOR  
1971
In 1971 the Japanese company 
Busicom released the LE-120A 
‘Handy’, the first hand-held four-
operation calculator on a chip. This 
was followed by the first hand-held 
scientific calculator, the Hewlett-
Packard HP-35. Integrated circuits 
further reduced the size and cost, and 
by 1978 the power consumption was 
so low that pocket calculators could 
be driven by solar cells.
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ARITHMOMETER   
1851
The arithmometer was patented in 
in France in 1820 by Charles Xavier 
Thomas de Colmar although not 
manufactured until 1851. It could 
add and subtract directly, and 
perform long multiplication and long 
division by using an accumulator. 
It was the first commercially 
successful mechanical calculator, 
staying in production  
until 1915.  

CURTA CALCULATOR
1948
The Curta was introduced by 
Curt Herzstark in 1948. It a small, 
hand-cranked digital mechanical 
calculator which can perform 
the four arithmetic operations as 
well as square roots and other 
operations. Its design derives from 
both Leibniz’s stepped reckoner and 
Thomas de Colmar’s arithmometer.  



THE ABACUS
The word ‘abacus’ is derived from the Greek word ‘abax’ 

or ‘abakon’ meaning ‘table’ or ‘tablet’.  It is a calculating 
device used for addition, subtraction, multiplication and 
division, with the advantage that it does not require pen and 
paper. There are two basic forms: a counting board with 
counters and a frame with beads strung on wires.  

The counting board is a piece of stone, wood or metal, with 
carved or painted lines between which the counters are moved. 
Small stones, called calculi, were used with counting boards in 
Greece and Rome, while stamped metal discs were used with 
counting boards in Europe. The earliest known counting board is 
the Salamis tablet, dating from c.300BC.     

There are three main forms of the bead frame abacus in use 
today: the Chinese, the Japanese and the Russian. 

The Chinese abacus, the suanpan, for which there is 
documentary evidence as early as AD190, is typically about 
20cm tall and usually has 13 wires. There are two beads on 
each wire above the divider and five beads on each wire below 
the divider. The Japanese abacus, the soroban, derives from 
the Chinese abacus which was imported to Japan in the 14th 
century. Its modern form has one bead above the divider and 
four beads below. The Russian abacus, the schoty, usually 
has ten beads on each wire with no divider.  It is often used 
vertically, with wires from left to right in the manner of a book.  



LOGARITHM TABLES
The idea of a logarithm first emerged independently and

almost simultaneously in the work of two men, the Scottish 
laird John Napier (1550–1617) and the Swiss craftsman Joost 
Bürgi (1552–1632), and within years of one another they 
had both produced tables for its use, Napier in 1614 and 
Bürgi in 1620. Napier and Bürgi were working in an era when 
the computation of mathematical tables, particularly those 
involving trigonometric functions (sin, cos, tan, etc.), was  
very important for navigation. 

It was clearly vital that such tables were as accurate as possible. 
Thus there was a strong motivation to find a way of simplifying 
the processes of multiplication and division to the level of 
addition and subtraction, which is exactly what logarithms do.  

Napier’s tables contained the logarithms of sines and tangents 
but were difficult to use. Fortunately, Napier’s invention was 
rapidly and enthusiastically taken up by Henry Briggs  
(1561–1630), the professor of geometry at Gresham College in 
London, who set about rectifying what he saw as the defects in 
Napier’s construction. In 1615 Briggs visited Napier in Edinburgh 
and together they agreed on a much more convenient form, now 
called logarithms to base 10. 

Briggs’s tables formed the basis of all logarithm tables published 
for the next 200 years or so.



DIFFERENCE ENGINE
By the beginning of the 19th century, the difficulty of producing 

error-free mathematical tables was a long-standing problem. 
Errors were made by human ‘computers’ doing the calculations 
and by the typesetters printing the tables. In 1822 Charles 
Babbage (1791–1871) proposed a mechanical calculator that 
would both calculate and print the tables, thereby eliminating 
both types of error. It would compute tables of various 
mathematical functions using the method of divided differences, 
a way to tabulate functions using polynomial coefficients. 
Babbage’s machine had the potential to produce many useful 
(and error-free) tables.   

In 1823 the British government awarded Babbage £1700 to kick-
start the project. However, although there was nothing wrong 
with Babbage’s design, to build the machine required technical 
expertise beyond anything that had been called on before, and 
it turned out to be much more expensive than Babbage, or the 
British government, had anticipated. It required an estimated 
25,000 parts! In 1833 Babbage fell out with his chief engineer 
and production stopped. By 1842, with £17,000 spent and with 
no completed difference engine in sight, the British government 
ceased the funding, and the project ground to a complete halt. It 
was revived again only at the end of the 20th century. In 1991, a 
working difference engine, constructed to Babbage’s later designs 
of 1847–9, was completed by the Science Museum in London, in 
in time for the bicentennial of Babbage’s birth. It consists of 4000 
parts, weighs three tons, and measures 11 feet long. The printing 
mechanism was completed in 2000.  



SIMPLE 
CODING

How to code the building blocks of algorithms in Python



INTRODUCTION
Software makes the world go round. Cars 

and TVs have software that controls how 
they work, and global commerce and finance 
are impossible without software to control 
the stocks, carry out payments, find the best 
transport route, etc.
Coding (or programming) is the construction of software. 
Coding involves writing a ‘recipe’, which in computing is 
called an algorithm (see the algorithms leaflets), in a so-called 
programming language that a computer can understand. When 
the computer runs the code, it follows the ‘recipe’, step by step.
I will use Python, a popular programming language for teaching 
and for professional software development. You will see that 
Python code reads almost like plain English. Writing simple 
programs in Python is not very difficult, once you have come up 
with the ‘recipe’, i.e. the algorithm.
All code shown in this leaflet can be run online, without installing 
any software on your computer. Just go to www.open.edu/
openlearn/makeitdigital. There you will also be able to change 
the code and share your creations with family and friends via 
email or on social media.
In this leaflet we will look at how to code in Python the building 
blocks of all algorithms (sequence, condition, repetition), and 
how to ask the user for input and produce some output on the 
screen. Let’s start!



SEQUENCE
Let’s imagine we are developing software for a restaurant, where a 
tip of 10% is added to the bill. The code is on the right. It’s simply 
a sequence of instructions, written one per line, and executed one 
by one from top to bottom. Our first program has only two kinds of 
instructions.
The first instruction is an assignment: the computer evaluates 
the expression on the right of the assignment (=) and stores the 
result in the variable on the left of the assignment. Each piece of 
information we need has to be stored in a variable.
For example, the third assignment states ‘let the tip be the 
expenses multiplied by the percentage’. Note that in Python the 
asterisk is the multiplication operator.
The last instruction, print, prints some text on the screen, 
followed by the computed result. Note the following:
• The comma separates the two things to be printed, in the 

same way we use commas in English to enumerate two, three, 
or more things.

• Text is written between double-quotes, which are not printed 
themselves. In Python, a sequence of characters surrounded 
by double-quotes is called a string.

I’m pointing out these details because they’re important once 
you start writing your own code. Computers are not as smart 
and accommodating as human readers: at the slightest spelling 
mistake (like pint instead of print) or missing punctuation (like 
forgetting the comma or double-quotes), the computer will give up 
on understanding and running your code. 

1 expenses = 54
2 percentage = 0.10
3 tip = expenses * percentage
4 bill = expenses + tip
5 print “Total bill:”, bill

Writing the program

Total bill: 59.4

Running the program



CONDITIONS
Let’s further assume the tip is automatically added only for groups 
of more than 6 people. We need one more variable, to store the 
number of people in the group, and one new instruction to handle 
both cases: if there are more than 6 people, the percentage is 10%, 
otherwise it’s 0%. The code is on the right.
The instruction ‘if condition: block else: block’ works as 
follows. The computer checks the condition after the if. If it is 
true, the computer then executes the block of code (the indented 
instructions) belonging to the if part. If the condition is false, 
the computer executes instead the else block. The indentation 
is needed to know which instructions belong to which part. 
Afterwards the computer continues executing the non-indented 
instructions.
You should of course not just believe the code is correct, but test 
it yourself. Large software companies employ many testers to 
check their code. Good testing includes choosing enough inputs 
(preferably borderline cases) to exercise all possible conditions. 
In this case, we should at least test for 6 and 7 people. If you go 
online, you can change the number of people to 6 and check that 
the total bill is just the expenses (54).
Notice there is a colon (:) at the end of the if and else lines. 
Forgetting the colons and forgetting to indent the instructions will 
lead to error messages.

1 expenses = 54
2 people = 7
3 if people > 6:
4    percentage = 0.10
5 else:
6    percentage = 0
7 tip = expenses * percentage
8 bill = expenses + tip
9 print “Total bill:”, bill

Total bill: 59.4

Running the program

Writing the program



REPETITION
A restaurant bill is made up from the prices of the various 
food and drink items ordered. Our program should sum 
those prices to obtain the expenses, to which the tip will 
then be added. The algorithm (which is independent of any 
programming language) is as follows.
1. Let items be a list of the prices of the items ordered.
2. Let the expenses be zero.
3. For each item in the items list:
 add it to the expenses.
4. Print the expenses.
This can be directly translated to Python, as shown on the 
right. In Python, lists are simply comma-separated values, 
within square brackets. (Note that I chose values that add 
up exactly to the same expenses as before.)
The ‘for variable in list: block’ instruction goes through 
the given list and successively stores each value of the list 
in the variable, then executes the block, which will refer to 
the variable to access its value. 
In this case the value is added to the current expenses and 
the result stored again in expenses, so that it is always up 
to date. Therefore the new expenses are the old expenses 
plus the item ordered.

1 items = [4.35, 2, 19.95, 22.70, 5]
2 expenses = 0
3 for item in items:
4    expenses = expenses + item
5 print “Food and drinks:”, expenses

Food and drinks: 54.0

Running the program

Writing the program



FUNCTIONS
The previous algorithm is calculating the sum of a list of 
numbers. This is such a common need that Python already 
provides a function for that, appropriately called sum. A 
function takes some data as input and returns some other 
data as output, e.g. sum takes a list of numbers and returns 
a single number.
To apply a function to some data (whether a variable, a 
number or a string), just write the name of the function 
followed by the data in parentheses. The computer will 
calculate the function’s output, which can be used in 
further calculations or assigned to a variable.
As you can see on the right, using the sum function 
shortens our code and makes it easier to understand, 
because the function’s name explicitly states what the 
code is doing. Good programmers don’t just write code, 
they write readable code. They know that code always 
changes to accommodate further customer requests, and 
trying to modify cryptic code you wrote some weeks or 
months ago is no fun.
Another useful function is input: it takes a string that it 
shows on the screen to the user, and returns a string with 
what the user typed on the keyboard until they pressed the 
RETURN or ENTER key. If you go online, you can run the 
code on the right and type in your own name.

Expenses: 54.0
What’s your name? Mary
Nice to meet you, Mary

Running the program

1 items = [4.35, 2, 19.95, 22.70, 5]
2 expenses = sum(items)
3 print “Expenses:”, expenses
4 name = input(“What’s your name?”)
5 print “Nice to meet you,”, name

Writing the program

NOTE: the input function always returns a string, 
even if the user types in a number. This is important, 
as we’ll see next.



REPETITION, AGAIN
Let’s use input to ask for the prices of orders instead of fixing 
them in a list. This requires a new iteration: an infinite loop that 
keeps asking until the user types ‘stop’, for example. We also 
need to use the float function to convert the string returned 
by input into a decimal number (also called a floating-point 
number) we can add to the expenses. The algorithm is:
1. Let the expenses be zero.
2. Forever repeat the following:

1. Let answer be the reply to the question “Price of order?”.
2. If the answer is equal to “stop”:
       Exit the loop.
3. Otherwise:

1. Let the price be the answer converted to a  
decimal number.

2. Add the price to the expenses.
3. Print the expenses.
The translation to Python is on the right. 

NOTE: we write two equals signs to check for equality, 
because a single equals sign is the assignment 
instruction.

Now go online to www.open.edu/openlearn/makeitdigital and 
put the complete program together. It starts as on the right, then 
asks the user for the number of people, calculates the tip, and 
prints the total bill.

Price of order? 4.35
Price of order? 2
Price of order? 19.95
Price of order? 22.70
Price of order? 5
Price of order? stop
Expenses: 54.0

Running the program

1 expenses = 0
2 while True:
3   answer = input(“Price of order?”)
4   if answer == “stop”:
5     break
6   else:
7     price = float(answer)
8     expenses = expenses + price
9 print “Expenses:”, expenses

Writing the program



How to code the building blocks of algorithms in Python

SUMMING UP
In this brief introduction to programming you have seen the 
fundamental building blocks provided by most programming 
languages:
• assignments (=) to store data in variables
• simple data types (strings and numbers)
• data structures (lists)
• sequence (one instruction per line)
• iteration (for and while loops)
• conditional instruction (if-else),
• comparisons (>, <, ==, >=, <=)
• functions (sum for lists, float to convert strings to

numbers)
• input from the keyboard (input function)
• output to the screen ( print instruction).
Programming languages have to be automatically understood 
by a machine, so the syntax and grammar are much more 
constrained than in English. Any spelling mistake like writing 
flat instead of float, or forgetting punctuation like commas 
and colons, or using the wrong data type like adding a string 
to a number, leads to an error.
You have also seen that programming involves writing clear 
and understandable code (note the plain English names of 
our variables and functions) to make it easier to change later, 
and testing it thoroughly.

1 expenses = 0
2 while True:
3   answer = input(“Price of order?”)
4 if answer == “stop”:
5 break
6 else:
7     price = float(answer)
8     expenses = expenses + price
9 print “Expenses:”, expenses

Learning to program forces us to think clearly and rigorously 
when solving a problem, because the solution has to be 
described in very small and precise steps that even a machine 
can understand. Python makes it easy to write the code once we 
come up with a sufficiently detailed algorithm, but the thinking 
(still) has to be done by us.

LEARN MORE ABOUT coding and computers with The Open 
University. TU100 My digital life takes you on a journey from 
the origins of information technology through to the familiar 
computers of today, and on to tomorrow’s radical technologies.




