
To accompany the BBC Make it Digital season

To accompany the BBC Make it Digital season

LEARNING WITH THE OPEN UNIVERSITY
The Open University (OU) has the UK’s largest academic
community with over 200,000 students, and with around
190 qualifications available in a range of fascinating and
challenging subjects, you’re sure to be inspired. We call our
flexible study method ‘Supported Open Learning’ – it’s different
to other learning methods because it combines one-to-one
support with flexibility, allowing you to fit study around your
life. With us, you don’t have to put your life on hold to get the
qualification you need. Around 70 per cent of our students fit
study around their job and busy, changing lives.

Beginning to study
Our Access modules have been specially designed to help you
find out what it’s like to study with the OU, get a taste for the
subjects we offer, develop your study skills, build your
confidence and prepare you for further study. You may even
be able to study for free. To find out more visit
www.openuniversity.co.uk/ug-access

Affordable education
Studying with the OU is more affordable than you might think.
Depending on where you live we have a range of options to
help make study more affordable. For example, if you have a
household income (personal income if you live in Scotland) of
less than £25,000 you may be eligible to study an Access
module for free. For more information on this and all of the
funding options available to you visit
www.openuniversity.co.uk/affordable

If you want to take your interest in
mathematics and computing further you may
be interested in the following qualifications:

BSc (Hons) Mathematics (Q31)
Mathematics is indispensable to modern life. It enables us to
predict the growth of markets, model airflow in a jet engine,
calculate accurate drug doses and create 3D computer
graphics. This degree will take your understanding of the
concepts and theories of mathematics – and how they are
applied in the real world – to an advanced level, and enhance
your career prospects in a huge array of fields.

BSc (Hons) Computing and IT (Q63)
Computing and IT skills have become fundamental to the
way we live, work, socialise and play. This degree course
opens up the world of technology and an array of exciting
career opportunities. It will help you to become a confident
user and manager of information technologies, to administer
and manage network or database systems, and to develop
new software solutions to meet specific market or
organisational needs.

For more information on these qualifications
and the subjects you can study visit
www.openuniversity.co.uk/courses

DIGITAL TECHNOLOGY PAST AND PRESENT
Digital technologies have changed the way we
work, shop, socialise, and are entertained.
Behind them lie clever algorithms – step by step
procedures that detect where we are and
suggest a route, predict the weather, recognise
our fingerprint, and do many other things.
Algorithms pre-date computers by over 2000
years. For example, simple arithmetic
procedures, like long division, are algorithms.

In this pack you will see how computation
changed over time, from early calculating devices
to modern computers, who are some of the
women and men behind major breakthroughs,
what are the fundamental concepts and the
limitations of algorithms. You will also see how to
translate algorithms into code, so that computers
can execute them much faster and more precisely
than humans ever could.

LEARNING WITH THE OPEN UNIVERSITY
The Open University (OU) has the UK’s largest academic
community with over 200,000 students, and with around
190 qualifications available in a range of fascinating and
challenging subjects, you’re sure to be inspired. We call our
flexible study method ‘Supported Open Learning’ – it’s different
to other learning methods because it combines one-to-one
support with flexibility, allowing you to fit study around your
life. With us, you don’t have to put your life on hold to get the
qualification you need. Around 70 per cent of our students fit
study around their job and busy, changing lives.

Beginning to study
Our Access modules have been specially designed to help you
find out what it’s like to study with the OU, get a taste for the
subjects we offer, develop your study skills, build your
confidence and prepare you for further study. You may even
be able to study for free. To find out more visit
www.openuniversity.co.uk/ug-access

Affordable education
Studying with the OU is more affordable than you might think.
Depending on where you live we have a range of options to
help make study more affordable. For example, if you have a
household income (personal income if you live in Scotland) of
less than £25,000 you may be eligible to study an Access
module for free. For more information on this and all of the
funding options available to you visit
www.openuniversity.co.uk/affordable

If you want to take your interest in
mathematics and computing further you may
be interested in the following qualifications:

BSc (Hons) Mathematics (Q31)
Mathematics is indispensable to modern life. It enables us to
predict the growth of markets, model airflow in a jet engine,
calculate accurate drug doses and create 3D computer
graphics. This degree will take your understanding of the
concepts and theories of mathematics – and how they are
applied in the real world – to an advanced level, and enhance
your career prospects in a huge array of fields.

BSc (Hons) Computing and IT (Q63)
Computing and IT skills have become fundamental to the
way we live, work, socialise and play. This degree course
opens up the world of technology and an array of exciting
career opportunities. It will help you to become a confident
user and manager of information technologies, to administer
and manage network or database systems, and to develop
new software solutions to meet specific market or
organisational needs.

For more information on these qualifications
and the subjects you can study visit
www.openuniversity.co.uk/courses

Supporting you all the way
Whether you’re at home, at work or on the
move, your tutor, study advisers and other
students are as close as you need them to
be – online, on email, on the phone and
face to face.
Whenever you log on, our forums are alive
with people, and the opportunity to
socialise doesn’t stop there. Our students
regularly get together, either to attend a
tutorial or as part of a local study group.

Find out more
To discover more about studying at
The Open University:
• visit

www.openuniversity.co.uk/courses
• request a prospectus at

www.openuniversity.co.uk/prospectus
• call our Student Registration & Enquiry

Service on 0300 303 5303
• email us from our website at

www.openuniversity.co.uk/contact

For information about The Open
University’s broadcasts and associated
learning visit our website
www.open.edu/openlearn/whats-on

The Open University has a wealth of
free online information and resources
about computing. To find out more visit
www.open.edu/openlearn/makeitdigital
The Open University has a wide range
of learning materials for sale, including
self-study workbooks, DVDs, videos
and software. For more information visit
www.ouw.co.uk
Grateful acknowledgement is made to
the following sources:
© AFP Photo/Eric Feferberg/Getty Images; © Alain
BUU/Gamma-Rapho/Getty Images; © Ancient Art &
Architecture Collection Ltd/Alamy; © Ann Ronan
Pictures/Print Collector/Getty Images; © Austrian
National Library; © Brinkstock/Alamy; © Chris
Howes/Wild Places Photography/Alamy;
© Chronicle/Alamy; © Classic Image/Alamy; © Cynthia
Johnson/The LIFE Images Collection/Getty Images;
© European Pressphoto Agency b.v./Alamy; © Everett
Collection Historical/Alamy; © Fine Art Images/Heritage
Images/Getty Images; © Geoffrey Kidd/Alamy;
© GL Archive/Alamy; © GraphicaArtis/Getty Images;
© Heritage Image Partnership/Alamy; © Hulton
Archive/Getty Images; © Image Source Plus/Alamy;
© INTERFOTO/Alamy; © iStockphoto.com/123dartist;
© iStockphoto.com/adempercem;
© iStockphoto.com/agsandrew; © iStockphoto.com/
alengo; © iStockphoto.com/ayvengo;
© iStockphoto.com/Erik Khalitov; © iStockphoto.com/
nzphotonz, © iStockphoto.com/Pali Rao;
© iStockphoto.com/simarik; © iStockphoto.com/
Sirgunhik; © iStockphoto.com/Thomas Eye Design;
© John Lund/Getty Images; © kubala/Alamy;
© Lyroky/Alamy; © Maryam Mirzakhani/Courtesy of
Stanford University; © Nick Higham/Alamy;
© Nigel Tout/www.vintagecalculators.com; © Nils
Jorgensen/REX; © Pictorial Press Ltd/Alamy; © Rex,
© SSPL/Getty Images; © World History Archive/Alamy;
© www.sliderulemuseum.com/Rose Vintage Instruments
Ohio.

Every effort has been made to contact copyright
holders. If any have been inadvertently overlooked
the publishers will be pleased to make the
necessary arrangements at the first opportunity.

Published in 2015 by The Open
University, Walton Hall, Milton Keynes,
MK7 6AA, to accompany the BBC Make
it Digital season, Autumn 2015.
Broadcast Commissioner for the OU:
Dr Caroline Ogilvie
Media Fellow for the OU: Mike Richards
Open University Make it Digital pack:
Authors: Dr June Barrow-Green, Allan Jones,
Chris Dobbyn, Dr Michel Wermelinger
Graphic Designer: Glen Darby
Broadcast Project Manager: David Bloomfield

Copyright © The Open University 2015
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise without the prior permission of the
copyright holders.
Enquiries regarding extracts or re-use of any
information in this publication should be sent to
The Open University’s Acquisitions and Licensing
Department at rights-general@.open.ac.uk
Printed in the United Kingdom by Belmont Press.
The Open University is incorporated by Royal
Charter (RC 000391), an exempt charity in
England & Wales, and a charity registered in
Scotland (SC 038302). The Open University is
authorised and regulated by the Financial
Conduct Authority.

SUP 047583

DIGITAL TECHNOLOGY PAST AND PRESENT
Digital technologies have changed the way we
work, shop, socialise, and are entertained.
Behind them lie clever algorithms – step by step
procedures that detect where we are and
suggest a route, predict the weather, recognise
our fingerprint, and do many other things.
Algorithms pre-date computers by over 2000
years. For example, simple arithmetic
procedures, like long division, are algorithms.

In this pack you will see how computation
changed over time, from early calculating devices
to modern computers, who are some of the
women and men behind major breakthroughs,
what are the fundamental concepts and the
limitations of algorithms. You will also see how to
translate algorithms into code, so that computers
can execute them much faster and more precisely
than humans ever could.

LEARNING WITH THE OPEN UNIVERSITY
The Open University (OU) has the UK’s largest academic
community with over 200,000 students, and with around
190 qualifications available in a range of fascinating and
challenging subjects, you’re sure to be inspired. We call our
flexible study method ‘Supported Open Learning’ – it’s different
to other learning methods because it combines one-to-one
support with flexibility, allowing you to fit study around your
life. With us, you don’t have to put your life on hold to get the
qualification you need. Around 70 per cent of our students fit
study around their job and busy, changing lives.

Beginning to study
Our Access modules have been specially designed to help you
find out what it’s like to study with the OU, get a taste for the
subjects we offer, develop your study skills, build your
confidence and prepare you for further study. You may even
be able to study for free. To find out more visit
www.openuniversity.co.uk/ug-access

Affordable education
Studying with the OU is more affordable than you might think.
Depending on where you live we have a range of options to
help make study more affordable. For example, if you have a
household income (personal income if you live in Scotland) of
less than £25,000 you may be eligible to study an Access
module for free. For more information on this and all of the
funding options available to you visit
www.openuniversity.co.uk/affordable

If you want to take your interest in
mathematics and computing further you may
be interested in the following qualifications:

BSc (Hons) Mathematics (Q31)
Mathematics is indispensable to modern life. It enables us to
predict the growth of markets, model airflow in a jet engine,
calculate accurate drug doses and create 3D computer
graphics. This degree will take your understanding of the
concepts and theories of mathematics – and how they are
applied in the real world – to an advanced level, and enhance
your career prospects in a huge array of fields.

BSc (Hons) Computing and IT (Q63)
Computing and IT skills have become fundamental to the
way we live, work, socialise and play. This degree course
opens up the world of technology and an array of exciting
career opportunities. It will help you to become a confident
user and manager of information technologies, to administer
and manage network or database systems, and to develop
new software solutions to meet specific market or
organisational needs.

For more information on these qualifications
and the subjects you can study visit
www.openuniversity.co.uk/courses

Supporting you all the way
Whether you’re at home, at work or on the
move, your tutor, study advisers and other
students are as close as you need them to
be – online, on email, on the phone and
face to face.
Whenever you log on, our forums are alive
with people, and the opportunity to
socialise doesn’t stop there. Our students
regularly get together, either to attend a
tutorial or as part of a local study group.

Find out more
To discover more about studying at
The Open University:
• visit

www.openuniversity.co.uk/courses
• request a prospectus at

www.openuniversity.co.uk/prospectus
• call our Student Registration & Enquiry

Service on 0300 303 5303
• email us from our website at

www.openuniversity.co.uk/contact

For information about The Open
University’s broadcasts and associated
learning visit our website
www.open.edu/openlearn/whats-on

The Open University has a wealth of
free online information and resources
about computing. To find out more visit
www.open.edu/openlearn/makeitdigital
The Open University has a wide range
of learning materials for sale, including
self-study workbooks, DVDs, videos
and software. For more information visit
www.ouw.co.uk
Grateful acknowledgement is made to
the following sources:
© AFP Photo/Eric Feferberg/Getty Images; © Alain
BUU/Gamma-Rapho/Getty Images; © Ancient Art &
Architecture Collection Ltd/Alamy; © Ann Ronan
Pictures/Print Collector/Getty Images; © Austrian
National Library; © Brinkstock/Alamy; © Chris
Howes/Wild Places Photography/Alamy;
© Chronicle/Alamy; © Classic Image/Alamy; © Cynthia
Johnson/The LIFE Images Collection/Getty Images;
© European Pressphoto Agency b.v./Alamy; © Everett
Collection Historical/Alamy; © Fine Art Images/Heritage
Images/Getty Images; © Geoffrey Kidd/Alamy;
© GL Archive/Alamy; © GraphicaArtis/Getty Images;
© Heritage Image Partnership/Alamy; © Hulton
Archive/Getty Images; © Image Source Plus/Alamy;
© INTERFOTO/Alamy; © iStockphoto.com/123dartist;
© iStockphoto.com/adempercem;
© iStockphoto.com/agsandrew; © iStockphoto.com/
alengo; © iStockphoto.com/ayvengo;
© iStockphoto.com/Erik Khalitov; © iStockphoto.com/
nzphotonz, © iStockphoto.com/Pali Rao;
© iStockphoto.com/simarik; © iStockphoto.com/
Sirgunhik; © iStockphoto.com/Thomas Eye Design;
© John Lund/Getty Images; © kubala/Alamy;
© Lyroky/Alamy; © Maryam Mirzakhani/Courtesy of
Stanford University; © Nick Higham/Alamy;
© Nigel Tout/www.vintagecalculators.com; © Nils
Jorgensen/REX; © Pictorial Press Ltd/Alamy; © Rex,
© SSPL/Getty Images; © World History Archive/Alamy;
© www.sliderulemuseum.com/Rose Vintage Instruments
Ohio.

Every effort has been made to contact copyright
holders. If any have been inadvertently overlooked
the publishers will be pleased to make the
necessary arrangements at the first opportunity.

Published in 2015 by The Open
University, Walton Hall, Milton Keynes,
MK7 6AA, to accompany the BBC Make
it Digital season, Autumn 2015.
Broadcast Commissioner for the OU:
Dr Caroline Ogilvie
Media Fellow for the OU: Mike Richards
Open University Make it Digital pack:
Authors: Dr June Barrow-Green, Allan Jones,
Chris Dobbyn, Dr Michel Wermelinger
Graphic Designer: Glen Darby
Broadcast Project Manager: David Bloomfield

Copyright © The Open University 2015
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise without the prior permission of the
copyright holders.
Enquiries regarding extracts or re-use of any
information in this publication should be sent to
The Open University’s Acquisitions and Licensing
Department at rights-general@.open.ac.uk
Printed in the United Kingdom by Belmont Press.
The Open University is incorporated by Royal
Charter (RC 000391), an exempt charity in
England & Wales, and a charity registered in
Scotland (SC 038302). The Open University is
authorised and regulated by the Financial
Conduct Authority.

SUP 047583

HISTORY OF
COMPUTERS

Some key developments in the history of computers, from the 19th century to the present

BOOLEAN ALGEBRA
1847
In 1847 the British mathematician
George Boole (1815–1864) published
The Mathematical Analysis of Logic.
In this he used algebraic symbols to
represent factual statements. Through
algebraic manipulation, useful
simplifications of the statements could
be made. His algebraic symbols could
take the values 0 and 1, representing
false and true. Boolean algebra is
widely used in digital electronics.

COMPUTERS:
THE IDEA
The idea of a computer was around
long before one was made. Why?
The essential ideas relating to computers
had been grasped during the 19th century
by Charles Babbage, Ada Lovelace and
others. But the creation of practical devices
depended on electronics that came over a
century later. With ever more sophisticated
electronics and communications technology
came faster, smaller and more versatile
computers. As computers became
ubiquitous and cheap, ways of merging
them with communications technology led
to innovations that could not have been
foreseen.

1837 1847

LEARN MORE ABOUT coding and computers with
The Open University. TU100 My digital life takes
you on a journey from the origins of information
technology through to the familiar computers of
today, and on to tomorrow’s radical technologies.

BABBAGE’S
ANALYTICAL ENGINE
1837
In 1837 the British mathematician
Charles Babbage (1791–1871)
outlined a design for a programmable,
mechanical general-purpose computer
called an Analytical Engine. Punched
cards were to be used for programs
and data. Apart from a small section,
it was not constructed.

HI
ST

OR
Y

OF
 C

OM
PU

TE
RS

COLOSSUS
1943
Colossus, the first programmable
electronic digital computer, began
working in December 1943 at
Bletchley Park as part of the UK’s
wartime code-breaking operation.
It was designed by the engineer
Tommy Flowers, and partly funded
by him as his superiors doubted its
feasibility. Several were made, but
they remained secret until the 1970s.

TRANSISTOR
1947
In 1947, the first transistors were
developed at Bell Laboratories
in the USA. They were miniature,
low-power solid-state electronics
devices for amplification and for
switching. Within a few years they
superseded the power-hungry and
unreliable valves used as switching
elements in the first computers.

1936 1945 1943 1947

COMPUTABLE
NUMBERS
1936
In 1936 the mathematicians Alan
Turing (pictured) and Alonzo Church
separately showed that there could
not be a rule-based method (or
algorithm) for establishing whether
certain types of mathematical
problem are solvable. As part of his
solution to this long-standing puzzle,
Turing conceived of a hypothetical
programmable computing machine.

VON NEUMANN
MODEL
1945
In 1945 the mathematician John
von Neumann in the USA proposed
a type of stored-program electronic
computer in which program
instructions were held in ‘live’
memory during operation, unlike
earlier designs (such as Colossus)
which were programmed by setting
switches or configuring wired
connections.

MAGNETIC CORE
MEMORY
1951
Magnetic core memory, consisting of
thousands of small rings of magnetic
material, transformed the reliability
of the random-access memory of
computers, replacing temperamental
technologies based on cathode-ray
tubes or ultrasonic waves in mercury
tubes. Magnetic core memory was
dominant until the adoption of
integrated-circuit memory in the 1960s.

INTEGRATED CIRCUIT
1958
An integrated circuit contains all
the components of a transistorised
electronic circuit on a single, tiny
piece of silicon. Integrated circuits are
mass produced and individually very
cheap. Typically they contain billions
of components, and are widely used
in electronic devices of all kinds,
especially computers.

1949 1951 1951 1958

FIRST WORKING
COMPUTERS
1949
The first stored-program digital
electronic computers became
operational in the period 1949–51
in several locations, and sometimes
initially as prototypes to test feasibility.
Examples include the EDSAC in
Cambridge, the ACE at London’s
National Physical Laboratory, the
Manchester University/Ferranti
computers and the EDVAC in the USA.

LEO COMPUTER
1951
The Lyons Electronic Office (LEO)
was used for stock control and
payroll in the Lyons chain of UK
tea shops. It was the first computer
used for a business application.
LEO was based on Cambridge
University’s EDSAC computer.
Computers based on LEO were
used until 1981.

RISC COMPUTING
1981
Reduced Instruction Set Computing
(RISC) uses a small set of processor
instructions and highly optimised
processors. It can outperform the
more usual Complex Instruction
Set Computing (CISC) used in
conventional computers despite its
limitations. It is widely used in mobile
phones and tablets because of its
power efficiency.

WORLD WIDE WEB
1989
In 1989 the British computer
scientist Tim Berners-Lee,
working at CERN, developed the
World Wide Web. It facilitates the
organisation, linking and display
of information contained on
dispersed computers joined by a
local network or by the internet.

1975 1981 1981 1989

TCP/IP
1975
Transmission Control Protocol
and Internet Protocol (TCP/IP)
was developed to enable data
communication between technically
incompatible networks. It was
developed in connection with the
ARPANET project in the USA, and
in 1975 a successful two-network
test transfer took place between
Stanford in California and London.
TCP/IP is the basis of the internet.

PERSONAL
COMPUTERS
1981
IBM model number 5150 was a
desktop microcomputer that came
to be known as a ‘personal computer’
(or PC). Its smallness and cheapness,
and the existence of ‘IBM compatible’
accessories and software, led to
its adoption in environments where
computers had not been widely used.
Apple computers soon followed.

CHARLES BABBAGE
26 DECEMBER 1791 – 18 OCTOBER 1871

Charles Babbage was a British mathematician, engineer
and inventor. He is now mainly remembered for designing

two computational machines based entirely on mechanical
processes, although he was active in many non-computational
projects.

Babbage’s first computational machine was the ‘difference
engine’, conceived around 1822. It was a mechanised calculator
rather than a computer, and was intended to help in the creation
of mathematical tables such as logarithms. Such tables were
normally compiled manually from human calculations and were
notoriously inaccurate. Babbage’s difference engine was never
completed in his lifetime, although a modern version based on
his later designs was made by the Science Museum in London
between 1989 and 1991, and found to work as intended.

Babbage’s second computational machine, the ‘analytical
engine’, was described in 1837. It was closer to the modern
idea of a computer than the difference engine was. ‘Programs’
were to be entered using punched cards of a kind already used
in Jacquard looms in weaving. Babbage’s design enabled loops
and conditional branching to be followed during execution of a
program. These are features of modern computer programs.

Funding problems and disagreements between Babbage and
his engineer meant that only a small part of the analytical engine
was made. Nevertheless, Babbage and Ada Lovelace described
the programming of such a machine, which would have used a
low-level language akin to a modern assembly language rather
than a high-level language such as COBOL or Fortran.

ALAN TURING
23 JUNE 1912 – 7 JUNE 1954

The British mathematician and cryptographer Alan Turing
envisaged a programmable computer during the 1930s

as part of his solution to a problem posed by an earlier
mathematician, David Hilbert, concerning the solvability of
unsolved mathematical problems.

Hilbert had wondered whether a rule-based procedure (more
precisely, an algorithmic procedure) could exist for determining
whether mathematical problems were solvable. Turing, as part
of his proof that no such procedure could exist, imagined a
programmable general purpose ‘computer’ (not a term he used).
The machine he envisaged was impractical, but this did not matter
as his proof did not require that such a machine be built. However,
he soon became interested in the practical realisation of his idea.

As a code-breaker at Bletchley Park during the Second World
War, Turing was not directly involved with the Colossus computer
designed and constructed by Tommy Flowers although Turing
knew and admired Flowers’s work. However, shortly after the
war Turing designed the ACE computer for the National Physical
Laboratory in London. Delays in the project led to his resignation
from it, and his transfer to Manchester University, where he used
the recently completed ACE computer until his early death in 1954.

Turing’s contribution to computing was mostly theoretical. He also
recognised the philosophical and ethical problems computers
raised. Unlike many of his colleagues, he saw no reason in principle
to distinguish between human intelligence and machine intelligence,
although he did not pretend that the computer programs of his own
time produced convincingly intelligent behaviour.

TIM BERNERS-LEE
8 JUNE 1955 – PRESENT DAY

The British computer scientist Tim Berners-Lee developed
the World Wide Web. He developed his idea during his

two periods of work at CERN, the European Organization for
Nuclear Research in Geneva, Switzerland.

In his first period at CERN, in 1980, Berners-Lee sought to
improve the organisation of information in an institution where
staff turnover was high, where many projects were being pursued
and updated simultaneously, and where computer use was
centralised but open to multiple users. He developed a form of
hypertext (which already existed) so that parts of documents
on the system could link to parts of other documents on the
same system. He considered this direct linking a better form of
organisation than using hierarchies, trees or keywords.

During his second period at CERN from 1984, Berners-Lee
developed his hypertext system to work between networked
computers on different, and possibly widely separated networks.
For this he married his hypertext system with internet protocol,
so that addresses of remote computers could be embedded in
hypertext links. Users could then move seamlessly between links
in documents held on different networks in different locations.
Berners-Lee also created the first internet browser.

A measure of Berners-Lee’s success is that many users
mistakenly think the World Wide Web is the same as the internet.
He declined to patent his invention or to require royalties,
believing the World Wide Web should be freely available.

WOMEN IN
MATHEMATICS
AND COMPUTING

Women who dared to go against the flow, and their achievements in mathematics

ÉMILIE DU CHÂTELET
1706 – 1749
The intellectual and scientist Gabrielle
Émilie Le Tonnelier de Breteuil,
marquise du Châtelet, knew and was
respected by many of the leading
French mathematicians of the day. She
collaborated scientifically with Voltaire,
who was one of her lovers and her
long-time companion, and her masterful
translation into French of Newton’s
fiercely difficult Principia Mathematica,
which included a detailed commentary
of her own, remains unsurpassed.

THE STORY
SO FAR
Ever wondered why stories about
mathematicians always seem to
be about men? Is it because men
are better at mathematics than
women? Absolutely not.
It’s because until very recently society
dictated that it wasn’t very respectable for
women to be mathematicians. Unfair as
it was, it was very difficult for a woman to
make herself heard and to be accepted by
other mathematicians. It just wasn’t the done
thing in polite society. But there were a few
women who dared to go against the flow.

c.300 1706

LEARN MORE ABOUT mathematics with
The Open University. MU123 Discovering
mathematics provides a gentle start to the
study of mathematics. It will help you to integrate
mathematical ideas into your everyday thinking.

HYPATIA
c.300 – 415
Hypatia is the only woman
mathematician of significance whose
name has come down to us from
Antiquity. Although none of her work
survives, she is reported to have written
commentaries on Apollonius’s Conics,
Ptolemy’s Almagest, Diophantus’s
Arithmetic and Archimedes’ Measurement
of the Circle. For her prominent
identification with learning, she was
hacked to death by a Christian mob.

W
OM

EN
 IN

 M
AT

HE
M

AT
IC

S

AN
D

CO
M

PU
TI

NG

SOPHIE GERMAIN
1776 – 1831
As a woman Sophie Germain was
barred from studying at the École
Polytechnique so she adopted a male
pseudonym and corresponded with
the lecturers. In 1816 she became the
first woman to win a Paris Academy
Prize with her work on elasticity.
Her best work was in number
theory where she made important
contributions to the proof of Fermat’s
Last Theorem.

ADA LOVELACE
1815 – 1852
Ada Lovelace was the daughter of the
famous poet Lord Byron, though she
never met her father. She was taught
mathematics by Mary Somerville and
by Augustus De Morgan. Through her
family and friends she met several
influential mathematicians and
scientists, one of whom was Charles
Babbage.

1718 17801776 1815

MARIA AGNESI
1718 – 1799
Maria Gaetana Agnesi was the
first woman mathematician of
the modern period. By the age of
eleven she had mastered several
languages, including French, Latin,
Greek, German, Spanish and
Hebrew. Her mathematical fame
rests on her two-volume Instituzione
Analitiche ad Uso della Gioventù
Italiana (1748–9), one of the earliest
treatments of the calculus.

MARY SOMERVILLE
1780 – 1872
Mary Somerville was a Scottish
science writer whose Mechanism of the
Heavens (1831), a popularisation and
translation of Laplace’s celebrated but
somewhat impenetrable Mécanique
Céleste, made her famous. Laplace,
who praised her interpretation, claimed
she was one of the few people who
understood his work. She was the first
woman to have experimental results
published by the Royal Society.

SOFIA
KOVALEVSKAYA
1850 – 1891
In 1868 Sofia Kovalevskaya engaged
in a ‘fictitious’ marriage so she could
leave Russia to study mathematics
in Germany. With her appointment at
the University of Stockholm in 1883,
she became the first professional
female mathematician. In 1888 her
work on the mathematics of a rotating
body won the Prix Bordin of the Paris
Academy.

MARY CARTWRIGHT
1900 – 1998
A student of GH Hardy, Mary
Cartwright made important
contributions to the mathematics
of chaos in collaboration with JE
Littlewood. In 1947 she was the
first woman mathematician to be
elected Fellow of the Royal Society,
and in 1961–2 she was the first
woman president of the London
Mathematical Society.

1820 1850 1882 1900

FLORENCE
NIGHTINGALE
1820 – 1910
The founder of modern nursing,
Florence Nightingale, was a pioneer
of applied statistics. Her studies of
the 1850s on mortality statistics,
arising from her experience in
the Crimean War, including her
introduction of the polar-area
diagram, led eventually to reforms
in ward hygiene and hospital design.

EMMY NOETHER
1882 – 1935
Emmy Noether was one of the
most talented and creative women
mathematicians of the 20th century
and maybe of all time. One of
the founders of modern abstract
algebra, she was dismissed from the
University of Göttingen by the Nazis
in 1933, and died following surgery in
the USA at the height of her creative
powers.

OLGA TAUSSKY-TODD
1906 – 1995
In 1937 the Austrian mathematician
Olga Taussky arrived in London,
having left Göttingen due to political
unrest. There she met and married the
mathematician Jack Todd. During the
war she worked on problems arising in
flutter analysis of supersonic aircraft.
Her most influential work was in matrix
theory but she also made important
contributions to number theory.

MARYAM
MIRZAKHANI
1977 – Present day
Maryam Mirzakhani is an Iranian
mathematician working at Stanford
University. While at school, she won
a gold medal in the Mathematical
Olympiad. In 2014 she became the
first woman to win a Fields Medal, the
highest honour a mathematician can
achieve, for her ‘striking and highly
original contributions to geometry and
dynamical systems’.

1906 1906 1919 1977

GRACE HOPPER
1906 – 1992
Grace Murray Hopper was an
American computer scientist and
a United States Navy rear admiral.
During 1951–2, she led the team
that constructed the first compiler for
a computing programming language.
This compiler was a precursor to
COBOL (Common Business-Oriented
Language) which was designed in
1959 and became widely adopted
due to Hopper’s influence.

JULIA ROBINSON
1919 – 1985
Julia Robinson made a remarkable
contribution to the solution of
Hilbert’s 10th Problem, a problem
concerning the existence of solutions
of a certain type of equation. In
1975 she became the first woman
to be elected to the United States
National Academy of Sciences,
and in 1983 she became the first
woman president of the American
Mathematical Society.

ADA LOVELACE
10 DECEMBER 1815 – 27 NOVEMBER 1852

Augusta Ada King, Countess of Lovelace, was born
Augusta Ada Byron and is now commonly known as

Ada Lovelace. She was an English mathematician and
writer chiefly known for her work on Charles Babbage’s
early mechanical general-purpose computer, the Analytical
Engine. Her notes on the engine include what is recognised
as the first algorithm intended to be carried out by a
machine. Because of this, she is regarded as the first
computer programmer.

Ada was born 10 December 1815 as the only child of the poet
Lord Byron and his wife Anne Isabella Byron. All Byron’s other
children were born out of wedlock to other women. Byron
separated from his wife a month after Ada was born and left
England forever four months later, eventually dying of disease
in the Greek War of Independence when Ada was eight years
old. Ada’s mother remained bitter towards Lord Byron and
promoted Ada’s interest in mathematics and logic in an effort
to prevent her from developing what she saw as the insanity
seen in her father, but Ada remained interested in him despite
this (and was, upon her eventual death, buried next to him at
her request).

Ada described her approach as ‘poetical science’ and
herself as an ‘Analyst (& Metaphysician)’. As a young adult,
her mathematical talents led her to an ongoing working
relationship and friendship with fellow British mathematician
Charles Babbage, and in particular Babbage’s work on the
Analytical Engine. Between 1842 and 1843, she translated an
article by an Italian military engineer.

WOMEN IN WW1
28 JULY 1914 – 11 NOVEMBER 1918

On 9 September 1915, Adelaide Davin, a computer operator
in Karl Pearson’s statistical laboratory at University

College London, wrote to Pearson:

“I was coming home in a tram just before 11 o’clock when
the driver called out that there had been a Zep, and that it
had been fired at twice – then the tram stopped, and the
lights went out, whereupon several women began to shriek.
I got out walked home to find all the neighbours in the street
gazing heavenwards. Nobody obeyed the instructions to seek
shelter. We could see the flashes of the anti-aircraft guns, but
they all went very wide of the mark.”

In WW1 combat in the air was a new phenomenon and
the theory and practice of anti-aircraft gunnery was in its
infancy. Clearly improvement in anti-aircraft systems was a
matter of urgency. However, the creation of the necessary
high-angled range tables was no trivial task and involved
complicated mathematics, extensive computations and good
draughtsmanship. The mathematical theory and data collection
were done by mathematicians based on board HMS Excellent
at Portsmouth and at Woolwich, while the computations and
production of the tables were done, much of it by women, in
Pearson’s laboratory. Women were employed as computers
elsewhere as part of the war effort, but Pearson’s aim “to
maintain a body of trained computers together who would have
the force of character and knowledge to meet new problems”
provided those in his laboratory with a unique opportunity.

SOFIA KOVALEVSKAYA
15 JANUARY 1850 – 10 FEBRUARY 1891

The Russian mathematician Sofia Vasilyevna Kovalevskaya
made important contributions to the theory of differential

equations, mathematical analysis and mechanics. She
was the first woman in modern Europe to hold a PhD in
mathematics, to hold a professorship in mathematics and
to be an editor of a scientific journal. She was also a
supporter of women’s rights, a champion of radical causes,
and an accomplished writer.

Sofia was able to study mathematics as a child but in 1868, as
Russian universities were closed to women, she engaged in a
‘fictitious’ marriage with Vladimir Kovalevskij, a paleontology
student, so she could emigrate. She first studied in Heidelberg
before, in 1871, moving to Berlin to study with the great Karl
Weierstrass, although she was not allowed to attend lectures
at the university. In 1874 she submitted three papers to the
University of Göttingen, including one on the rings of Saturn,
and was awarded her PhD summa cum laude. Meanwhile she
had visited London and attended George Eliot’s salon.

Sofia returned to Russia with Vladimir in 1874 and in 1878 their
daughter was born. In 1881 she left Vladimir and went to Paris
to continue with her mathematics. Vladimir committed suicide in
1883, and in the same year Sofia was appointed to a temporary
position at the University of Stockholm. In 1888 she won the
prestigious Prix Bordin of the Paris Academy for her work on
the mathematics of a rotating body. In 1889 she was appointed
to a permanent professorship in Stockholm. Two years later she
died unexpectedly of pneumonia.

BASICS OF
ALGORITHMS

How algorithms work: step by step recipes for everyday life

ALGORITHMS MAKE THE
WORLD GO AROUND

An algorithm is a precisely defined step by
step procedure that, given some input,

will produce the desired output. Whenever
you give directions to someone, you are
constructing an algorithm with the start
location as input and the destination as
output. It’s a very restricted algorithm: it
works only for those start and end points.

A sat nav device has a general algorithm that
given any origin and destination (the input) will
find the route (the output) from one to the other,
according to the map it has. The route is itself an
algorithm (‘turn left in 200m’, etc.) for the driver
to execute.

The modern world cannot function without
algorithms. Shopping, entertainment, scientific
discovery, transportation, and many other things
all rely on sophisticated algorithms to process
payments, buy stock, analyse DNA, stream video,
recognise licence plates, and so on.

THE BASIC INGREDIENTS

Let M and N be two positive integer numbers
while M and N are different:
 if M > N then:
 let M be M - N
 otherwise:
 let N be N - M
the GCD is N (or M because they’re the same)

An algorithm is a combination of sequences of steps (one after the other), repetition of steps, and
choices between steps, depending on some conditions.

The algorithm is a sequence of three steps:
1. Get the input
2. Compute the GCD
3. Show it
The computation is a repetition of a two-way choice, each
one being a single step that makes the larger number
smaller.

Example of Euclid’s algorithm

M N STEPS

21 49 M (21) is not more than N (49) so
N changes to N - M = 49 - 21 = 28

21 28 M (21) is not more than N (28) so
N changes to N - M = 28 - 21 = 7

21 7 M (21) is more than N (7) so M changes
to M - N = 21 - 7 = 14

14 7 M (14) is more than N (7) so M changes
to M - N = 14 - 7 = 7

7 7 M and N are the same so GCD equals 7

All algorithms impose conditions on what input is
acceptable to them. In this case both numbers must
be positive integers, to guarantee that the repetition
will stop.

Euclid’s algorithm
One of the oldest algorithms known was described by
Greek mathematician Euclid in c. 300BC. It takes two
positive integers (like 1, 2, 3, etc.) and produces their
greatest common divisor (GCD), the largest number that
divides both without a remainder.

SEARCHING: TWO RECIPES

Linear search
This simplest algorithm goes through each word in the text
and compares it to the search word. If they’re the same, the
search stops and it reports success (the word has occurred
in the text). If it gets to the end of the text without finding
the same word, it reports failure.

Search word - “the”.

Text - “to be or not to be in this text that is the question”

Binary search
A faster algorithm, that does fewer comparisons to report
success or failure, is binary search. The input must be
ordered: in this case the text’s words appear in dictionary
order.

The search word is compared to the word in the middle of
the document. If they’re the same, the search stops. If the
search word comes alphabetically before the middle word,
then the binary search continues on the left half of the
document, otherwise on the right half. This is repeated until
the word is found (success) or the part of the document to
be searched is empty (failure).

The search word is the 12th word of the text, so linear
search makes 12 comparisons before reporting success.

The worst case for a linear search is when the searched
word occurs at the end of the text or not at all, because
all the words the document will be compared before
reporting success or failure. Even removing duplicate words
beforehand from the text doesn’t improve things much
(10 instead of 12 comparisons).

Binary search required only 2 comparisons to find the word.
After each comparison the search space (the list of words) is
halved, making the algorithm much faster. It is an example of
a recursive algorithm, which is applied in the same form to
ever smaller inputs.

Some algorithms solve very specific problems, others are general and are used in a variety of
contexts – for instance search algorithms where we want to know if a word occurs in a text.

to be or not to be in this text that is the question

1.
No

2.
No

3.
No

4.
No

5.
No

6.
No

7.
No

8.
No

9.
No

10.
No

11.
No

12.
Yes

Success
be in is not or question text that the this to

1. No 2. Yes

Success

AN ALGORITHM’S BEST FRIEND

Hash table
A hash table, a widely used data structure, is a table of key
and bucket pairs. Each bucket contains all the data with
that key. The key could be the length of a word, and thus
each bucket only contains words of the same length.

Given a search word, the algorithm computes its length and
then searches only the corresponding bucket.

The search for “the” still requires two comparisons,
but other searches become faster. Looking for “today”
reports failure after zero comparisons with hash search
because there is no 5-letter word bucket. It would take 11
comparisons with linear search and 4 with binary search.

Hashing is an example of a divide-and-conquer strategy.
In this case the text’s words are divided into buckets so that
each search is performed on a single bucket.

How the data are structured goes hand in hand with how the algorithm works. Often the key to an
efficient algorithm is an efficient data structure.

Key
(number of letters
in the word)

Bucket
(words of the same length)

2-letter words be in is or to

3-letter words not the

1. No 2. Yes

Success

4-letter words text that this

8-letter words question

The postcode is an example of a hash key, the bucket
being all addresses with the same postcode, thus
helping to sort and deliver post more quickly.

Search Comparisons Result

Linear Binary Hash

the 12 2 2 Success

not 4 3 1 Success

today 11 4 0 Failure

BRUTE FORCE: THE SURE BUT SLOW WAY

t h a t i s t h e q u e s t i o n

1 q u e s t Failure

2 q u e s t Failure

3 q u e s t Failure

…

12 q u e s t Failure

13 q u e s t Match

14 q u e s t Match

15 q u e s t Match

16 q u e s t Match

17 q u e s t Success

Brute force approach
This approach tries all possible matches systematically, like the linear search.
To search for the string ‘quest’ the 1st character of the string is compared to
the 1st character of the text. If they are the same, the 2nd string character is
compared to the 2nd of the text, and so on, until the whole string matches
or one comparison fails. Following a failure the string is shifted right by one
character and the comparisons re-start.

A word processor can quickly search for any sequence of characters (a string). It is impractical for a
word processor to construct a hash table of all strings occurring in the document, memorising each
string’s position in the text, and to change the information constantly as the document is edited.
A different algorithm is needed.

17 comparisons are made:
12 mismatches of ‘q’ (first letter of
string) followed by matching the
5-letter string.

t h a t i s t h e q u e s t i o n

1 q u e s t Failure (no space
in word)

2 q u e s t Failure (no ‘h’ in
word)

3 q u e s t Failure (e in word
so move to e)

4 q u e s t Match

5 q u e s t Match

6 q u e s t Match

7 q u e s t Match

8 q u e s t Success

The Boyer–Moore algorithm
In 1977, computer scientists Boyer and Moore had three key
insights into the problem.
1. If the whole string matches, so must the last character.

Hence we can do comparisons in backwards order.
2. If the match fails because the character in the text does not

occur in the string, we can shift the string by its whole length.
3. If the match fails but the text character occurs in the

string, the string is moved enough positions so that the
text character matches the corresponding string character.

‘t’ (the last letter of the string) is compared against a space,
which doesn’t occur in the string and the whole string shifts to
the right.
‘t’ is compared with ‘h’, which also doesn’t occur in the string.
‘t’ is compared with ‘e’, which is the 3rd letter of the string
and we therefore shift the string to align the ‘e’s.
‘t’ is compared, which matches, and then in turn each letter is
matched backwards until all match.
8 comparisons are made, less than half used by brute force.

THINKING OUTSIDE THE BOX
A different perspective can sometimes lead to a more efficient algorithm.

SUMMING UP
Great algorithms are worth millions to companies. Google
became leader of search engines, attracting millions in adverts,
due to its ranking algorithm, while Amazon, Netflix and others
use recommendation algorithms to attract further business.
Creating good algorithms requires both creativity and technical
expertise, but we all occasionally think algorithmically, e.g.
when planning how best to organise a trip.

We have looked at some key algorithmic concepts and
strategies that you can apply in everyday problem solving.
All algorithms use sequence, repetition and choice of steps.
Brute force explores all potential solutions until finding one.
Divide-and-conquer partitions the solution space to work
on smaller sub-problems. Divide-and-conquer algorithms are
often recursive, i.e. they repeat themselves. Algorithms work
only for the input they expect (e.g. two positive integers). Good
algorithms use to their advantage what is known about the
input (e.g. that the input is ordered). Algorithms depend heavily
on how data are organised. Finding the appropriate data
structure often helps find an efficient algorithm.

LEARN MORE ABOUT algorithms and data structures with
The Open University. M269 Algorithms, data structures and
computability will help you become a computational thinker,
exploring a range of computing concepts and applying these to a
variety of problems.

What are the limitations of algorithms and the challenges of writing them?

THE LIMITS OF
ALGORITHMS

ALGORITHMS EVERYWHERE

W hether we are aware of it or not,
algorithms dominate our lives today.

From online retailing to share trading, from
drug design to driverless cars, from online
dating to taxi services, from setting insurance
premiums to surveillance – algorithms have
exploded into every corner of modern life.

All this raises a serious question: it seems
that algorithms can do everything, but are
there things that they can’t do? What are their
limitations, if any?

One way to think about this is to consider the
efficiency of an algorithm. There is nothing
mysterious about the concept itself: it is simply
a recipe – a set of steps which, if followed, solve
a problem. So it is usually easy enough to write
an algorithm. What is much harder is to write an
efficient algorithm.

WHAT ALGORITHMS CAN’T DO – UNCOMPUTABILITY
Some problems can take far too long to solve. But are there problems that can’t be solved
at all by an algorithm?

The Turing machine
In 1936, the great mathematician Alan Turing succeeded
in proving an abstract mathematical problem known,
dauntingly, as the Entscheidungsproblem. His proof was
based on the idea of a hypothetical machine, now known
as the Turing machine, which can simulate any algorithm,
regardless of its complexity.

The machine has a register that indicates what state it is
currently in, and an infinitely long tape divided into cells,
each cell containing a symbol, 1, 0 or blank.

The Turing machine’s head (shown in grey) is able to read the
symbol in the cell under it, write a symbol to that cell, and
shift the tape one cell to the left or right.

The machine carries out the following steps:
1. Read the symbol under the head.
2. Get the current state from the register.
3. Consult a table of instructions to decide what to do next.
4. Execute those instructions and move to a new state.

For the following (partial) example of a table

State Head
reads

Head
writes

Tape shift Move to
State

1 Blank None Left 2

1 0 Write 1 Right 2

1 1 Write 0 Right 3

2 Blank Write 0 Right 1

0 1 0 1 If the machine is in State 1, and 0 is under the head, then
it writes 1 to the tape, shifts the tape right one space, and
moves to State 2. It goes on repeating Steps 1–4 until it
stops.

Turing used the Turing machine to prove that certain
problems were undecidable and could never be solved by
any algorithm.

MEASURING ALGORITHMS

Big-O analysis
It is futile to try to compare algorithms directly
by timing the actual speeds at which they run.
Different computers will yield different timings on
exactly the same algorithms. However, computer
scientists have developed a way of estimating
and comparing the efficiency of algorithms. It is
known as complexity analysis or Big-O.

Big-O analysis compares the efficiency of
algorithms in terms of how the number of
operations they have to do (and thus how long
they will take to finish) increases as the size of
their input grows.

We can use Big-O analyses to compare the
efficiency of algorithms. This is illustrated
graphically by plotting the number of operations
against input size N. The figure shows plots of
algorithms of various complexity. This shows the O(N) algorithms’ workload increases steadily, while

O(log N) algorithms grow much more slowly. Algorithms’ workload
in the important class O(Nm) (e.g. O(N2) – known as polynomial
algorithms) increases very rapidly, whereas that for O(N!) skyrockets.

Algorithms can be measured by
how many operations they perform
and how long it takes to do those
operations.

O

TRAVELLING SALESPERSON
PROBLEM
A salesperson has to visit a number (N) of cities, each a certain
distance from the others. The problem is to find a route that,
from a given start point, visits all cities once only, and is the
shortest round trip.

One obvious algorithm would be to generate every possible
route and pick the shortest. In the 5 city problem, there are
24 possible routes. Any modern computer could find the
shortest route in microseconds. However, the problem is that
our algorithm increases very rapidly (like O(N!)). If there are
10 cities, there are 362,880 possible routes; 25 cities gives
roughly 1.22 ×1017; and for 75 cities, an unimaginably huge
3.31×10107 routes. (The number of atoms in the observable
universe is somewhere between 4×1079 and 4×1081.) Therefore
no conceivable computer could examine this number of routes
in the lifetime of the universe.

The problem
for 5 cities

POLYNOMIAL ALGORITHMS
Realistically, only polynomial algorithms (the
blue line in the graph overleaf), or better, are
fast enough solving real-world problems.

Computer scientists refer to problems that can be
solved by algorithms running in polynomial time (the
time required to solve the problem) as belonging to
class P. Another class of problem – called NP –
comprises those in which an answer can be verified
in polynomial time. For instance, it is very easy
to verify whether a list of numbers is sorted, so
sorting is an NP problem; and there are numerous
polynomial algorithms for sorting that list, so the
problem is P also.

Many problems are known to be able to be verified
(NP), but with no known polynomial algorithm to
solve them.

A major unsolved problem in computing and
mathematics is whether P = NP. In other words, for
every NP problem, is there a polynomial algorithm
that can solve it? This is one of seven Millennium
Prize Problems. Solve it and you will
win US$1,000,000!

UNCONVENTIONAL ALGORITHMS
Unconventional algorithms, from the natural world, are often used to find a good answer.

The travelling salesperson problem may seem unrealistic,
but it is representative of a huge class of important problems
called optimisation problems. Computer scientists have
devised a number of algorithms (heuristic algorithms) to
tackle such problems. None of these can be certain to find
the best possible answer, only good answers.

A number of unconventional algorithms have also been
developed, many of them based on the way in which problems
are solved in the natural world. For example, it is known that
swarms of ants are able to find the shortest distance between
points. A similar principle can be applied to the travelling
salesperson problem. A swarm of virtual ‘ants’ is distributed
across a graph representing the cities. By applying simple
rules, the swarm eventually congregates on the shortest path.Travelling ants

SUMMING UP
Despite some restrictions, there are still countless problems
that can be solved algorithmically, and algorithms are
creeping inexorably into daily life. But does this matter? Won’t
algorithms just make our lives easier and better?

We are quite accustomed to the idea that algorithms can
deal with all the boring, repetitive jobs that humans generally
don’t like doing, supposedly liberating us for more creative
and enriching work. But the evidence is now starting to
accumulate that algorithms can also replace humans working
in fields where we would consider that human intelligence,
knowledge and skill are required – medicine, the law, planning,
and so on.

A study conducted at the Martin School in Oxford examined
702 of such types of job, and concluded that 47% of current
employment was at risk of replacement by technologies that
are already operational, or are being tested in laboratories.

The future of work, and of society as we know it, may be
threatened by algorithms …

LEARN MORE ABOUT algorithms and data structures with
The Open University. M269 Algorithms, data structures and
computability will help you become a computational thinker,
exploring a range of computing concepts and applying these to a
variety of problems.

CALCULATING
DEVICES

Innovations through history that have helped us to count

SALAMIS TABLET
c.300BC
The Salamis tablet, which is the
earliest known surviving example of
a counting board, was found on the
Greek island of Salamis in 1846. It is
made of white marble, has three sets
of Greek numbers arranged around its
edges, and measures approximately
150cm x 75cm x 4.5cm.

HELPING
US COUNT
You may be surprised to know that
the calculator you have in your
pocket or on your smart phone
has a rich history which stretches
back over several millennia.
From clay tablets to marble counting boards,
from abacuses to logarithm tables, from
slide rules to calculating machines, the types
of device have been many and varied. Each
device has been an innovation of its day,
yet all build on the same basic principle of
mathematics.

c.2600BC c.300BC

LEARN MORE ABOUT mathematical concepts
and techniques with The Open University.
MST124 Essential mathematics 1 provides a
broad and enjoyable foundation for mathematics.
It teaches you the essential ideas and techniques
that underpin mathematical subjects.

SUMERIAN CLAY
TABLET
c.2600BC
The world’s oldest datable
mathematical table comes from the
Sumerian city of Shuruppag to the
north of Uruk. It is ruled into three
columns on each side: the first
two columns list length measures
followed by the Sumerian word for
‘equal’, and the final column gives
the products of these lengths in area
measure.

CA
LC

UL
AT

IN
G

DE
VI

CE
S

NAPIER’S
LOGARITHMS
1614
The Scottish laird John Napier (1550–
1617), in an effort to aid astronomers,
spent twenty years developing his
tables of logarithms, computing almost
10 million entries. His initial formulation
was rather awkward but thanks to the
mathematician Henry Briggs (1561–
1630), who visited Napier in 1615, the
logarithms were reformulated into the
more practical form we know today.

WILLIAM OUGHTRED
SLIDE RULE
1620
In 1620 Edmund Gunter (1581–1626)
made a straight logarithmic scale (or
rule) on which calculations could be
performed using a set of dividers.
William Oughtred (1574–1660)
capitalised on this idea and used two
such scales sliding by one another
to perform direct multiplication and
division, thus inventing the slide rule.
He also developed a circular slide rule.

1596 16171614 1620

OPUS PALATINUM
DE TRIANGULIS
1596
Georg Joachim de Porris, also known
as Rheticus (1514–1574), is famous
for facilitating the publication of
Copernicus’s On the Revolutions of
the Heavenly Spheres. Rheticus’s
own masterwork, the 1500 page
Palatine Work on Triangles, published
posthumously, provides tables for all
six trigonometric functions that were
still being used in the 20th century.

NAPIER’S RODS
1617
Napier’s Rods – often known as
Napier’s Bones, supposedly because
the more expensive sets were made
of bone or ivory – were created by
John Napier to aid multiplication
(only addition is needed to do the
calculation). They consist of 10
rectangular blocks, and Napier
explained how to use them in his
book Rabdologia.

STEPPED
RECKONER
1671 – 1673
Gottfried Wilhelm Leibniz’s calculator
was inspired by Pascal’s but had
for its operating mechanism a new
mechanical feature, a stepped drum.
Although it was the first machine to
perform all four arithmetic operations,
its intricate precision gear-work,
which was rather beyond the
construction methods of the time,
meant it rarely worked reliably.

CHARLES BABBAGE’S
DIFFERENCE ENGINE
1822
In 1822 Charles Babbage proposed a
mechanical calculator for computing
tables of various mathematical
functions using the method of divided
differences. Between 1823 and 1842
the British government gave him
£17,000 to build it but he did not
succeed in constructing a working
engine.

1648 1671 1801 1822

BLAISE PASCAL’S
CALCULATOR
1648
Pascal appears to have been
stimulated to develop his calculator
while helping his father, a supervisor
of taxes. It was a machine for
addition and subtraction, and it went
through 50 prototypes before Pascal
presented it to the public in 1648. It
is one of the world’s first mechanical
calculators.

JACQUARD’S LOOM
1801
The Jacquard loom was a
mechanical loom invented by the
Frenchman Joseph Marie Jacquard.
The loom was controlled by a chain
of punched cards laced together
in a continuous sequence. One
card corresponded to one row of
the design. Jacquard’s punch-card
system was later adapted by Charles
Babbage.

MILLIONAIRE
CALCULATOR
1893
The ‘Millionaire’ mechanical
calculator was designed by Otto
Steiger, a Swiss engineer, and was in
production until 1935. It was the first
commercially successful calculator
that could perform multiplication
directly, and it was very fast for its
day. The standard model weighed
72lb and some models could weigh
up to 120lb!

POCKET CALCULATOR
1971
In 1971 the Japanese company
Busicom released the LE-120A
‘Handy’, the first hand-held four-
operation calculator on a chip. This
was followed by the first hand-held
scientific calculator, the Hewlett-
Packard HP-35. Integrated circuits
further reduced the size and cost, and
by 1978 the power consumption was
so low that pocket calculators could
be driven by solar cells.

1851 1893 1948 1971

ARITHMOMETER
1851
The arithmometer was patented in
in France in 1820 by Charles Xavier
Thomas de Colmar although not
manufactured until 1851. It could
add and subtract directly, and
perform long multiplication and long
division by using an accumulator.
It was the first commercially
successful mechanical calculator,
staying in production
until 1915.

CURTA CALCULATOR
1948
The Curta was introduced by
Curt Herzstark in 1948. It a small,
hand-cranked digital mechanical
calculator which can perform
the four arithmetic operations as
well as square roots and other
operations. Its design derives from
both Leibniz’s stepped reckoner and
Thomas de Colmar’s arithmometer.

THE ABACUS
The word ‘abacus’ is derived from the Greek word ‘abax’

or ‘abakon’ meaning ‘table’ or ‘tablet’. It is a calculating
device used for addition, subtraction, multiplication and
division, with the advantage that it does not require pen and
paper. There are two basic forms: a counting board with
counters and a frame with beads strung on wires.

The counting board is a piece of stone, wood or metal, with
carved or painted lines between which the counters are moved.
Small stones, called calculi, were used with counting boards in
Greece and Rome, while stamped metal discs were used with
counting boards in Europe. The earliest known counting board is
the Salamis tablet, dating from c.300BC.

There are three main forms of the bead frame abacus in use
today: the Chinese, the Japanese and the Russian.

The Chinese abacus, the suanpan, for which there is
documentary evidence as early as AD190, is typically about
20cm tall and usually has 13 wires. There are two beads on
each wire above the divider and five beads on each wire below
the divider. The Japanese abacus, the soroban, derives from
the Chinese abacus which was imported to Japan in the 14th
century. Its modern form has one bead above the divider and
four beads below. The Russian abacus, the schoty, usually
has ten beads on each wire with no divider. It is often used
vertically, with wires from left to right in the manner of a book.

LOGARITHM TABLES
The idea of a logarithm first emerged independently and

almost simultaneously in the work of two men, the Scottish
laird John Napier (1550–1617) and the Swiss craftsman Joost
Bürgi (1552–1632), and within years of one another they
had both produced tables for its use, Napier in 1614 and
Bürgi in 1620. Napier and Bürgi were working in an era when
the computation of mathematical tables, particularly those
involving trigonometric functions (sin, cos, tan, etc.), was
very important for navigation.

It was clearly vital that such tables were as accurate as possible.
Thus there was a strong motivation to find a way of simplifying
the processes of multiplication and division to the level of
addition and subtraction, which is exactly what logarithms do.

Napier’s tables contained the logarithms of sines and tangents
but were difficult to use. Fortunately, Napier’s invention was
rapidly and enthusiastically taken up by Henry Briggs
(1561–1630), the professor of geometry at Gresham College in
London, who set about rectifying what he saw as the defects in
Napier’s construction. In 1615 Briggs visited Napier in Edinburgh
and together they agreed on a much more convenient form, now
called logarithms to base 10.

Briggs’s tables formed the basis of all logarithm tables published
for the next 200 years or so.

DIFFERENCE ENGINE
By the beginning of the 19th century, the difficulty of producing

error-free mathematical tables was a long-standing problem.
Errors were made by human ‘computers’ doing the calculations
and by the typesetters printing the tables. In 1822 Charles
Babbage (1791–1871) proposed a mechanical calculator that
would both calculate and print the tables, thereby eliminating
both types of error. It would compute tables of various
mathematical functions using the method of divided differences,
a way to tabulate functions using polynomial coefficients.
Babbage’s machine had the potential to produce many useful
(and error-free) tables.

In 1823 the British government awarded Babbage £1700 to kick-
start the project. However, although there was nothing wrong
with Babbage’s design, to build the machine required technical
expertise beyond anything that had been called on before, and
it turned out to be much more expensive than Babbage, or the
British government, had anticipated. It required an estimated
25,000 parts! In 1833 Babbage fell out with his chief engineer
and production stopped. By 1842, with £17,000 spent and with
no completed difference engine in sight, the British government
ceased the funding, and the project ground to a complete halt. It
was revived again only at the end of the 20th century. In 1991, a
working difference engine, constructed to Babbage’s later designs
of 1847–9, was completed by the Science Museum in London, in
in time for the bicentennial of Babbage’s birth. It consists of 4000
parts, weighs three tons, and measures 11 feet long. The printing
mechanism was completed in 2000.

SIMPLE
CODING

How to code the building blocks of algorithms in Python

INTRODUCTION
Software makes the world go round. Cars

and TVs have software that controls how
they work, and global commerce and finance
are impossible without software to control
the stocks, carry out payments, find the best
transport route, etc.
Coding (or programming) is the construction of software.
Coding involves writing a ‘recipe’, which in computing is
called an algorithm (see the algorithms leaflets), in a so-called
programming language that a computer can understand. When
the computer runs the code, it follows the ‘recipe’, step by step.
I will use Python, a popular programming language for teaching
and for professional software development. You will see that
Python code reads almost like plain English. Writing simple
programs in Python is not very difficult, once you have come up
with the ‘recipe’, i.e. the algorithm.
All code shown in this leaflet can be run online, without installing
any software on your computer. Just go to www.open.edu/
openlearn/makeitdigital. There you will also be able to change
the code and share your creations with family and friends via
email or on social media.
In this leaflet we will look at how to code in Python the building
blocks of all algorithms (sequence, condition, repetition), and
how to ask the user for input and produce some output on the
screen. Let’s start!

SEQUENCE
Let’s imagine we are developing software for a restaurant, where a
tip of 10% is added to the bill. The code is on the right. It’s simply
a sequence of instructions, written one per line, and executed one
by one from top to bottom. Our first program has only two kinds of
instructions.
The first instruction is an assignment: the computer evaluates
the expression on the right of the assignment (=) and stores the
result in the variable on the left of the assignment. Each piece of
information we need has to be stored in a variable.
For example, the third assignment states ‘let the tip be the
expenses multiplied by the percentage’. Note that in Python the
asterisk is the multiplication operator.
The last instruction, print, prints some text on the screen,
followed by the computed result. Note the following:
• The comma separates the two things to be printed, in the

same way we use commas in English to enumerate two, three,
or more things.

• Text is written between double-quotes, which are not printed
themselves. In Python, a sequence of characters surrounded
by double-quotes is called a string.

I’m pointing out these details because they’re important once
you start writing your own code. Computers are not as smart
and accommodating as human readers: at the slightest spelling
mistake (like pint instead of print) or missing punctuation (like
forgetting the comma or double-quotes), the computer will give up
on understanding and running your code.

1 expenses = 54
2 percentage = 0.10
3 tip = expenses * percentage
4 bill = expenses + tip
5 print “Total bill:”, bill

Writing the program

Total bill: 59.4

Running the program

CONDITIONS
Let’s further assume the tip is automatically added only for groups
of more than 6 people. We need one more variable, to store the
number of people in the group, and one new instruction to handle
both cases: if there are more than 6 people, the percentage is 10%,
otherwise it’s 0%. The code is on the right.
The instruction ‘if condition: block else: block’ works as
follows. The computer checks the condition after the if. If it is
true, the computer then executes the block of code (the indented
instructions) belonging to the if part. If the condition is false,
the computer executes instead the else block. The indentation
is needed to know which instructions belong to which part.
Afterwards the computer continues executing the non-indented
instructions.
You should of course not just believe the code is correct, but test
it yourself. Large software companies employ many testers to
check their code. Good testing includes choosing enough inputs
(preferably borderline cases) to exercise all possible conditions.
In this case, we should at least test for 6 and 7 people. If you go
online, you can change the number of people to 6 and check that
the total bill is just the expenses (54).
Notice there is a colon (:) at the end of the if and else lines.
Forgetting the colons and forgetting to indent the instructions will
lead to error messages.

1 expenses = 54
2 people = 7
3 if people > 6:
4 percentage = 0.10
5 else:
6 percentage = 0
7 tip = expenses * percentage
8 bill = expenses + tip
9 print “Total bill:”, bill

Total bill: 59.4

Running the program

Writing the program

REPETITION
A restaurant bill is made up from the prices of the various
food and drink items ordered. Our program should sum
those prices to obtain the expenses, to which the tip will
then be added. The algorithm (which is independent of any
programming language) is as follows.
1. Let items be a list of the prices of the items ordered.
2. Let the expenses be zero.
3. For each item in the items list:
 add it to the expenses.
4. Print the expenses.
This can be directly translated to Python, as shown on the
right. In Python, lists are simply comma-separated values,
within square brackets. (Note that I chose values that add
up exactly to the same expenses as before.)
The ‘for variable in list: block’ instruction goes through
the given list and successively stores each value of the list
in the variable, then executes the block, which will refer to
the variable to access its value.
In this case the value is added to the current expenses and
the result stored again in expenses, so that it is always up
to date. Therefore the new expenses are the old expenses
plus the item ordered.

1 items = [4.35, 2, 19.95, 22.70, 5]
2 expenses = 0
3 for item in items:
4 expenses = expenses + item
5 print “Food and drinks:”, expenses

Food and drinks: 54.0

Running the program

Writing the program

FUNCTIONS
The previous algorithm is calculating the sum of a list of
numbers. This is such a common need that Python already
provides a function for that, appropriately called sum. A
function takes some data as input and returns some other
data as output, e.g. sum takes a list of numbers and returns
a single number.
To apply a function to some data (whether a variable, a
number or a string), just write the name of the function
followed by the data in parentheses. The computer will
calculate the function’s output, which can be used in
further calculations or assigned to a variable.
As you can see on the right, using the sum function
shortens our code and makes it easier to understand,
because the function’s name explicitly states what the
code is doing. Good programmers don’t just write code,
they write readable code. They know that code always
changes to accommodate further customer requests, and
trying to modify cryptic code you wrote some weeks or
months ago is no fun.
Another useful function is input: it takes a string that it
shows on the screen to the user, and returns a string with
what the user typed on the keyboard until they pressed the
RETURN or ENTER key. If you go online, you can run the
code on the right and type in your own name.

Expenses: 54.0
What’s your name? Mary
Nice to meet you, Mary

Running the program

1 items = [4.35, 2, 19.95, 22.70, 5]
2 expenses = sum(items)
3 print “Expenses:”, expenses
4 name = input(“What’s your name?”)
5 print “Nice to meet you,”, name

Writing the program

NOTE: the input function always returns a string,
even if the user types in a number. This is important,
as we’ll see next.

REPETITION, AGAIN
Let’s use input to ask for the prices of orders instead of fixing
them in a list. This requires a new iteration: an infinite loop that
keeps asking until the user types ‘stop’, for example. We also
need to use the float function to convert the string returned
by input into a decimal number (also called a floating-point
number) we can add to the expenses. The algorithm is:
1. Let the expenses be zero.
2. Forever repeat the following:

1. Let answer be the reply to the question “Price of order?”.
2. If the answer is equal to “stop”:
 Exit the loop.
3. Otherwise:

1. Let the price be the answer converted to a
decimal number.

2. Add the price to the expenses.
3. Print the expenses.
The translation to Python is on the right.

NOTE: we write two equals signs to check for equality,
because a single equals sign is the assignment
instruction.

Now go online to www.open.edu/openlearn/makeitdigital and
put the complete program together. It starts as on the right, then
asks the user for the number of people, calculates the tip, and
prints the total bill.

Price of order? 4.35
Price of order? 2
Price of order? 19.95
Price of order? 22.70
Price of order? 5
Price of order? stop
Expenses: 54.0

Running the program

1 expenses = 0
2 while True:
3 answer = input(“Price of order?”)
4 if answer == “stop”:
5 break
6 else:
7 price = float(answer)
8 expenses = expenses + price
9 print “Expenses:”, expenses

Writing the program

How to code the building blocks of algorithms in Python

SUMMING UP
In this brief introduction to programming you have seen the
fundamental building blocks provided by most programming
languages:
• assignments (=) to store data in variables
• simple data types (strings and numbers)
• data structures (lists)
• sequence (one instruction per line)
• iteration (for and while loops)
• conditional instruction (if-else),
• comparisons (>, <, ==, >=, <=)
• functions (sum for lists, float to convert strings to

numbers)
• input from the keyboard (input function)
• output to the screen (print instruction).
Programming languages have to be automatically understood
by a machine, so the syntax and grammar are much more
constrained than in English. Any spelling mistake like writing
flat instead of float, or forgetting punctuation like commas
and colons, or using the wrong data type like adding a string
to a number, leads to an error.
You have also seen that programming involves writing clear
and understandable code (note the plain English names of
our variables and functions) to make it easier to change later,
and testing it thoroughly.

1 expenses = 0
2 while True:
3 answer = input(“Price of order?”)
4 if answer == “stop”:
5 break
6 else:
7 price = float(answer)
8 expenses = expenses + price
9 print “Expenses:”, expenses

Learning to program forces us to think clearly and rigorously
when solving a problem, because the solution has to be
described in very small and precise steps that even a machine
can understand. Python makes it easy to write the code once we
come up with a sufficiently detailed algorithm, but the thinking
(still) has to be done by us.

LEARN MORE ABOUT coding and computers with The Open
University. TU100 My digital life takes you on a journey from
the origins of information technology through to the familiar
computers of today, and on to tomorrow’s radical technologies.

